基于旋转拉普拉斯分布的SO(3)鲁棒概率建模

IF 18.6
Yingda Yin;Jiangran Lyu;Yang Wang;Haoran Liu;He Wang;Baoquan Chen
{"title":"基于旋转拉普拉斯分布的SO(3)鲁棒概率建模","authors":"Yingda Yin;Jiangran Lyu;Yang Wang;Haoran Liu;He Wang;Baoquan Chen","doi":"10.1109/TPAMI.2025.3532450","DOIUrl":null,"url":null,"abstract":"Estimating the 3DoF rotation from a single RGB image is an important yet challenging problem. As a popular approach, probabilistic rotation modeling additionally carries prediction uncertainty information, compared to single-prediction rotation regression. For modeling probabilistic distribution over <inline-formula><tex-math>$\\text{SO}(3)$</tex-math></inline-formula>, it is natural to use Gaussian-like Bingham distribution and matrix Fisher, however they are shown to be sensitive to outlier predictions, e.g., <inline-formula><tex-math>$180^\\circ$</tex-math></inline-formula> error and thus are unlikely to converge with optimal performance. In this paper, we draw inspiration from multivariate Laplace distribution and propose a novel rotation Laplace distribution on <inline-formula><tex-math>$\\text{SO}(3)$</tex-math></inline-formula>. Our rotation Laplace distribution is robust to the disturbance of outliers and enforces much gradient to the low-error region that it can improve. In addition, we show that our method also exhibits robustness to small noises and thus tolerates imperfect annotations. With this benefit, we demonstrate its advantages in semi-supervised rotation regression, where the pseudo labels are noisy. To further capture the multi-modal rotation solution space for symmetric objects, we extend our distribution to rotation Laplace mixture model and demonstrate its effectiveness. Our extensive experiments show that our proposed distribution and the mixture model achieve State-of-the-Art performance in all the rotation regression experiments over both probabilistic and non-probabilistic baselines.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"3469-3486"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution\",\"authors\":\"Yingda Yin;Jiangran Lyu;Yang Wang;Haoran Liu;He Wang;Baoquan Chen\",\"doi\":\"10.1109/TPAMI.2025.3532450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the 3DoF rotation from a single RGB image is an important yet challenging problem. As a popular approach, probabilistic rotation modeling additionally carries prediction uncertainty information, compared to single-prediction rotation regression. For modeling probabilistic distribution over <inline-formula><tex-math>$\\\\text{SO}(3)$</tex-math></inline-formula>, it is natural to use Gaussian-like Bingham distribution and matrix Fisher, however they are shown to be sensitive to outlier predictions, e.g., <inline-formula><tex-math>$180^\\\\circ$</tex-math></inline-formula> error and thus are unlikely to converge with optimal performance. In this paper, we draw inspiration from multivariate Laplace distribution and propose a novel rotation Laplace distribution on <inline-formula><tex-math>$\\\\text{SO}(3)$</tex-math></inline-formula>. Our rotation Laplace distribution is robust to the disturbance of outliers and enforces much gradient to the low-error region that it can improve. In addition, we show that our method also exhibits robustness to small noises and thus tolerates imperfect annotations. With this benefit, we demonstrate its advantages in semi-supervised rotation regression, where the pseudo labels are noisy. To further capture the multi-modal rotation solution space for symmetric objects, we extend our distribution to rotation Laplace mixture model and demonstrate its effectiveness. Our extensive experiments show that our proposed distribution and the mixture model achieve State-of-the-Art performance in all the rotation regression experiments over both probabilistic and non-probabilistic baselines.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 5\",\"pages\":\"3469-3486\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848321/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10848321/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从单个RGB图像估计3DoF旋转是一个重要但具有挑战性的问题。与单预测旋转回归相比,概率旋转建模增加了预测不确定性信息,是一种流行的方法。对于$\text{SO}(3)$上的概率分布建模,使用类高斯Bingham分布和矩阵Fisher是很自然的,但是它们对异常值预测很敏感,例如$180^\circ$误差,因此不太可能收敛到最佳性能。本文从多元拉普拉斯分布中得到启发,提出了一种新的$\text{SO}(3)$上的旋转拉普拉斯分布。我们的旋转拉普拉斯分布对异常值的扰动具有鲁棒性,并对低误差区域施加了很大的梯度。此外,我们还表明我们的方法对小噪声也具有鲁棒性,因此可以容忍不完美的注释。有了这个优点,我们证明了它在半监督旋转回归中的优点,其中伪标签是有噪声的。为了进一步捕获对称物体的多模态旋转解空间,我们将分布扩展到旋转拉普拉斯混合模型,并证明了其有效性。我们的大量实验表明,我们提出的分布和混合模型在概率和非概率基线上的所有旋转回归实验中都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Estimating the 3DoF rotation from a single RGB image is an important yet challenging problem. As a popular approach, probabilistic rotation modeling additionally carries prediction uncertainty information, compared to single-prediction rotation regression. For modeling probabilistic distribution over $\text{SO}(3)$, it is natural to use Gaussian-like Bingham distribution and matrix Fisher, however they are shown to be sensitive to outlier predictions, e.g., $180^\circ$ error and thus are unlikely to converge with optimal performance. In this paper, we draw inspiration from multivariate Laplace distribution and propose a novel rotation Laplace distribution on $\text{SO}(3)$. Our rotation Laplace distribution is robust to the disturbance of outliers and enforces much gradient to the low-error region that it can improve. In addition, we show that our method also exhibits robustness to small noises and thus tolerates imperfect annotations. With this benefit, we demonstrate its advantages in semi-supervised rotation regression, where the pseudo labels are noisy. To further capture the multi-modal rotation solution space for symmetric objects, we extend our distribution to rotation Laplace mixture model and demonstrate its effectiveness. Our extensive experiments show that our proposed distribution and the mixture model achieve State-of-the-Art performance in all the rotation regression experiments over both probabilistic and non-probabilistic baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信