{"title":"紧密双星系统中共同包络阶段的数值模拟:牛顿引力与修正引力的比较","authors":"A.V. Astashenok, A.S. Baigashov, A.S. Tepliakov, K.P. Gusev and E.R. Shamardina","doi":"10.1088/1475-7516/2025/01/093","DOIUrl":null,"url":null,"abstract":"We consider the important stage in evolution of close binary system namely common envelope phase in framework of various models of modified gravity. The comparison of results between calculations in Newtonian gravity and modified gravity allows to estimate possible observational imprints of modified gravity. Although declination from Newtonian gravity should be negligible we can propose that due to the long times some new effects can appear. We use the moving-mesh code AREPO for numerical simulation of binary system consisting of ∼ M⊙ white dwarf and a red giant with mass ∼ 2M⊙. For implementing modified gravity into AREPO code we apply the method of (pseudo)potential, assuming that modified gravity can be described by small corrections to usual Newtonian gravitational potential. As in Newtonian case initial orbit has to shrink due to the energy transfer to the envelope of a giant. We investigated evolution of common envelope in a case of simple model of modified gravity with various values of parameters and compared results with simulation in frames of Newtonian gravity.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"18 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of common envelope stage in close binary systems: comparison between Newtonian and modified gravity\",\"authors\":\"A.V. Astashenok, A.S. Baigashov, A.S. Tepliakov, K.P. Gusev and E.R. Shamardina\",\"doi\":\"10.1088/1475-7516/2025/01/093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the important stage in evolution of close binary system namely common envelope phase in framework of various models of modified gravity. The comparison of results between calculations in Newtonian gravity and modified gravity allows to estimate possible observational imprints of modified gravity. Although declination from Newtonian gravity should be negligible we can propose that due to the long times some new effects can appear. We use the moving-mesh code AREPO for numerical simulation of binary system consisting of ∼ M⊙ white dwarf and a red giant with mass ∼ 2M⊙. For implementing modified gravity into AREPO code we apply the method of (pseudo)potential, assuming that modified gravity can be described by small corrections to usual Newtonian gravitational potential. As in Newtonian case initial orbit has to shrink due to the energy transfer to the envelope of a giant. We investigated evolution of common envelope in a case of simple model of modified gravity with various values of parameters and compared results with simulation in frames of Newtonian gravity.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/093\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/093","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Numerical simulation of common envelope stage in close binary systems: comparison between Newtonian and modified gravity
We consider the important stage in evolution of close binary system namely common envelope phase in framework of various models of modified gravity. The comparison of results between calculations in Newtonian gravity and modified gravity allows to estimate possible observational imprints of modified gravity. Although declination from Newtonian gravity should be negligible we can propose that due to the long times some new effects can appear. We use the moving-mesh code AREPO for numerical simulation of binary system consisting of ∼ M⊙ white dwarf and a red giant with mass ∼ 2M⊙. For implementing modified gravity into AREPO code we apply the method of (pseudo)potential, assuming that modified gravity can be described by small corrections to usual Newtonian gravitational potential. As in Newtonian case initial orbit has to shrink due to the energy transfer to the envelope of a giant. We investigated evolution of common envelope in a case of simple model of modified gravity with various values of parameters and compared results with simulation in frames of Newtonian gravity.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.