Chaiyawat Kaewmeechai, Jack Strand, Alexander Shluger
{"title":"晶体和非晶Ga2O3中捕获空穴的电子结构和性质","authors":"Chaiyawat Kaewmeechai, Jack Strand, Alexander Shluger","doi":"10.1103/physrevb.111.035203","DOIUrl":null,"url":null,"abstract":"Structure and electronic properties of self-trapped holes were studied in both crystalline and amorphous Ga</a:mi>2</a:mn></a:msub>O</a:mi>3</a:mn></a:msub></a:mrow></a:math> using density functional theory (DFT) and the nonlocal PBE0-TC-LRC density functional. Amorphous (a) <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>Ga</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\"normal\">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> structures were generated using classical molecular dynamics and the melt-quench technique and further optimized using DFT. They exhibit an average density of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mn>4.84</e:mn><e:mspace width=\"4pt\"/><e:mi mathvariant=\"normal\">g</e:mi><e:mo>/</e:mo><e:msup><e:mrow><e:mi>cm</e:mi></e:mrow><e:mn>3</e:mn></e:msup></e:mrow></e:math> and band gap around 4.3 eV. Calculations predict deep hole trapping in crystalline and amorphous phases with the hole-trapping energies in the amorphous structures being deeper than those found in the crystalline structure. In <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mi mathvariant=\"normal\">a</h:mi><h:mtext>−</h:mtext><h:msub><h:mi>Ga</h:mi><h:mn>2</h:mn></h:msub><h:msub><h:mi mathvariant=\"normal\">O</h:mi><h:mn>3</h:mn></h:msub></h:mrow></h:math>, trapped holes are localized around low-coordinated oxygen atoms (two or three coordinated). We predict the formation of stable hole bipolarons in both the crystalline and amorphous phases facilitated by the formation of O–O bonds with binding energies about 0.2 eV. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure and properties of trapped holes in crystalline and amorphous Ga2O3\",\"authors\":\"Chaiyawat Kaewmeechai, Jack Strand, Alexander Shluger\",\"doi\":\"10.1103/physrevb.111.035203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structure and electronic properties of self-trapped holes were studied in both crystalline and amorphous Ga</a:mi>2</a:mn></a:msub>O</a:mi>3</a:mn></a:msub></a:mrow></a:math> using density functional theory (DFT) and the nonlocal PBE0-TC-LRC density functional. Amorphous (a) <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:mrow><c:msub><c:mi>Ga</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\\\"normal\\\">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> structures were generated using classical molecular dynamics and the melt-quench technique and further optimized using DFT. They exhibit an average density of <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\"><e:mrow><e:mn>4.84</e:mn><e:mspace width=\\\"4pt\\\"/><e:mi mathvariant=\\\"normal\\\">g</e:mi><e:mo>/</e:mo><e:msup><e:mrow><e:mi>cm</e:mi></e:mrow><e:mn>3</e:mn></e:msup></e:mrow></e:math> and band gap around 4.3 eV. Calculations predict deep hole trapping in crystalline and amorphous phases with the hole-trapping energies in the amorphous structures being deeper than those found in the crystalline structure. In <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mi mathvariant=\\\"normal\\\">a</h:mi><h:mtext>−</h:mtext><h:msub><h:mi>Ga</h:mi><h:mn>2</h:mn></h:msub><h:msub><h:mi mathvariant=\\\"normal\\\">O</h:mi><h:mn>3</h:mn></h:msub></h:mrow></h:math>, trapped holes are localized around low-coordinated oxygen atoms (two or three coordinated). We predict the formation of stable hole bipolarons in both the crystalline and amorphous phases facilitated by the formation of O–O bonds with binding energies about 0.2 eV. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.035203\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035203","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Electronic structure and properties of trapped holes in crystalline and amorphous Ga2O3
Structure and electronic properties of self-trapped holes were studied in both crystalline and amorphous Ga2O3 using density functional theory (DFT) and the nonlocal PBE0-TC-LRC density functional. Amorphous (a) Ga2O3 structures were generated using classical molecular dynamics and the melt-quench technique and further optimized using DFT. They exhibit an average density of 4.84g/cm3 and band gap around 4.3 eV. Calculations predict deep hole trapping in crystalline and amorphous phases with the hole-trapping energies in the amorphous structures being deeper than those found in the crystalline structure. In a−Ga2O3, trapped holes are localized around low-coordinated oxygen atoms (two or three coordinated). We predict the formation of stable hole bipolarons in both the crystalline and amorphous phases facilitated by the formation of O–O bonds with binding energies about 0.2 eV. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter