Anyie P Atencio, Sergi Burguera Piña, George Zhuchkov, Araceli de Aquino, Jas S Ward, Kari Rissanen, J. Carlos Lima, Inmaculada Angurell, Antonio Frontera, Laura Rodriguez
{"title":"金(I)-膦配合物的调谐发光:结构、光物理和理论见解","authors":"Anyie P Atencio, Sergi Burguera Piña, George Zhuchkov, Araceli de Aquino, Jas S Ward, Kari Rissanen, J. Carlos Lima, Inmaculada Angurell, Antonio Frontera, Laura Rodriguez","doi":"10.1039/d4qi03225j","DOIUrl":null,"url":null,"abstract":"Gold(I) complexes featuring phosphine ligands functionalized with chromophores such as triphenylene, phenanthrene, and carbazole were synthesized and systematically studied to explore the relationship between molecular structure and luminescence properties. Comprehensive photophysical characterization revealed that the coordination environment and chromophore positioning significantly influence intersystem crossing, phosphorescence, and aggregation behavior. In solution, aggregation-induced phenomena were probed using computational tools, including density functional theory (DFT) and noncovalent interaction (NCI) analysis, revealing diverse π-stacking and Au···π interactions. Distinct photophysical trends were identified among the three series of compounds, with triphenylene derivatives exhibiting aggregation-induced emission broadening and phenanthrene derivatives showing strong heavy atom effects. The combination of experimental and theoretical insights provides a foundation for designing luminescent materials with tunable properties for optoelectronic applications.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"74 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Luminescence in Gold(I)-Phosphine Complexes: Structural, Photophysical, and Theoretical Insights\",\"authors\":\"Anyie P Atencio, Sergi Burguera Piña, George Zhuchkov, Araceli de Aquino, Jas S Ward, Kari Rissanen, J. Carlos Lima, Inmaculada Angurell, Antonio Frontera, Laura Rodriguez\",\"doi\":\"10.1039/d4qi03225j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold(I) complexes featuring phosphine ligands functionalized with chromophores such as triphenylene, phenanthrene, and carbazole were synthesized and systematically studied to explore the relationship between molecular structure and luminescence properties. Comprehensive photophysical characterization revealed that the coordination environment and chromophore positioning significantly influence intersystem crossing, phosphorescence, and aggregation behavior. In solution, aggregation-induced phenomena were probed using computational tools, including density functional theory (DFT) and noncovalent interaction (NCI) analysis, revealing diverse π-stacking and Au···π interactions. Distinct photophysical trends were identified among the three series of compounds, with triphenylene derivatives exhibiting aggregation-induced emission broadening and phenanthrene derivatives showing strong heavy atom effects. The combination of experimental and theoretical insights provides a foundation for designing luminescent materials with tunable properties for optoelectronic applications.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi03225j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi03225j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Tuning Luminescence in Gold(I)-Phosphine Complexes: Structural, Photophysical, and Theoretical Insights
Gold(I) complexes featuring phosphine ligands functionalized with chromophores such as triphenylene, phenanthrene, and carbazole were synthesized and systematically studied to explore the relationship between molecular structure and luminescence properties. Comprehensive photophysical characterization revealed that the coordination environment and chromophore positioning significantly influence intersystem crossing, phosphorescence, and aggregation behavior. In solution, aggregation-induced phenomena were probed using computational tools, including density functional theory (DFT) and noncovalent interaction (NCI) analysis, revealing diverse π-stacking and Au···π interactions. Distinct photophysical trends were identified among the three series of compounds, with triphenylene derivatives exhibiting aggregation-induced emission broadening and phenanthrene derivatives showing strong heavy atom effects. The combination of experimental and theoretical insights provides a foundation for designing luminescent materials with tunable properties for optoelectronic applications.