结合Landsat 5 TM和无人机图像,在有限的地面流速和水位观测下估算河流流量

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Maomao Li, Changsen Zhao, Qi Huang, Tianli Pan, Hervé Yesou, Françoise Nerry, Zhao-Liang Li
{"title":"结合Landsat 5 TM和无人机图像,在有限的地面流速和水位观测下估算河流流量","authors":"Maomao Li, Changsen Zhao, Qi Huang, Tianli Pan, Hervé Yesou, Françoise Nerry, Zhao-Liang Li","doi":"10.1016/j.rse.2025.114610","DOIUrl":null,"url":null,"abstract":"River discharge plays an indispensable role in maintaining the stability of the hydrosphere system and eco-environment. Previous methods that utilize satellite imagery to estimate discharge over poorly gauged basins are generally tailored for large rivers and heavily reliant on ground-based measurements. Consequently, uncertainties often escalate when these methods are applied to medium-sized rivers. Based on Landsat 5 Thematic Mapper (TM) and unmanned aerial vehicle (UAV) images, this study proposed a framework for estimating the discharge of large and medium rivers with limited ground observations. It comprises (1) a modified C/M method, which considers the spatial heterogeneity of rivers using single-site observation data, and (2) a newly developed method for estimating river bathymetry with zero discharge measurements (RIBA-zero). Results show that, utilizing the modified <em>C</em>/<em>M</em> method, rivers wider than three times the satellite resolution (i.e., 90 m) exhibit a relative root mean square error (rRMSE) of 0.23 in the velocity estimation. Narrower rivers display a slight increase in the rRMSE (0.41), which is still within an encouraging range. For both types of river widths, the accuracy of flow velocity estimation is higher during high-flow periods compared with the low-flow counterparts. In terms of the flow area estimation, the RIBA-zero method is much more suited for parabola-shaped cross-sections (rRMSE = 0.22) and flood seasons (rRMSE = 0.35). Additionally, when replacing 30-m Landsat 5 TM with 10 m-resolution Sentinel-2 imageries, the approaches make a significant improvement in velocity estimation for rivers narrower than 90 m across all periods, exhibiting great potential to estimate discharge in medium rivers with finer resolution satellite imageries. The framework requires a few ground observations for discharge estimates with the Nash–Sutcliffe efficiency coefficient (NSE) reaching ∼0.9, thereby greatly facilitating hydrology-related studies with profound implications for sustainable water resources management worldwide.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"62 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Landsat 5 TM and UAV images to estimate river discharge with limited ground-based flow velocity and water level observations\",\"authors\":\"Maomao Li, Changsen Zhao, Qi Huang, Tianli Pan, Hervé Yesou, Françoise Nerry, Zhao-Liang Li\",\"doi\":\"10.1016/j.rse.2025.114610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"River discharge plays an indispensable role in maintaining the stability of the hydrosphere system and eco-environment. Previous methods that utilize satellite imagery to estimate discharge over poorly gauged basins are generally tailored for large rivers and heavily reliant on ground-based measurements. Consequently, uncertainties often escalate when these methods are applied to medium-sized rivers. Based on Landsat 5 Thematic Mapper (TM) and unmanned aerial vehicle (UAV) images, this study proposed a framework for estimating the discharge of large and medium rivers with limited ground observations. It comprises (1) a modified C/M method, which considers the spatial heterogeneity of rivers using single-site observation data, and (2) a newly developed method for estimating river bathymetry with zero discharge measurements (RIBA-zero). Results show that, utilizing the modified <em>C</em>/<em>M</em> method, rivers wider than three times the satellite resolution (i.e., 90 m) exhibit a relative root mean square error (rRMSE) of 0.23 in the velocity estimation. Narrower rivers display a slight increase in the rRMSE (0.41), which is still within an encouraging range. For both types of river widths, the accuracy of flow velocity estimation is higher during high-flow periods compared with the low-flow counterparts. In terms of the flow area estimation, the RIBA-zero method is much more suited for parabola-shaped cross-sections (rRMSE = 0.22) and flood seasons (rRMSE = 0.35). Additionally, when replacing 30-m Landsat 5 TM with 10 m-resolution Sentinel-2 imageries, the approaches make a significant improvement in velocity estimation for rivers narrower than 90 m across all periods, exhibiting great potential to estimate discharge in medium rivers with finer resolution satellite imageries. The framework requires a few ground observations for discharge estimates with the Nash–Sutcliffe efficiency coefficient (NSE) reaching ∼0.9, thereby greatly facilitating hydrology-related studies with profound implications for sustainable water resources management worldwide.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2025.114610\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.114610","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

河流流量对维持水圈系统和生态环境的稳定起着不可或缺的作用。以前利用卫星图像来估计测量不准确的流域的流量的方法通常是针对大型河流量身定制的,并且严重依赖地面测量。因此,当这些方法应用于中型河流时,不确定性往往会加剧。基于Landsat 5 Thematic Mapper (TM)和无人机(UAV)图像,提出了基于有限地面观测的大中型河流流量估算框架。它包括:(1)利用单站点观测数据考虑河流空间异质性的改进C/M方法,以及(2)新开发的零排放测量估算河流水深的方法(RIBA-zero)。结果表明,利用改进的C/M方法,宽度大于卫星分辨率3倍(即90 M)的河流流速估计的相对均方根误差(rRMSE)为0.23。较窄河流的均方根误差略有增加(0.41),但仍在令人鼓舞的范围内。对于两种河流宽度,高流量时期流速估算的精度都高于低流量时期。在流面积估算方面,RIBA-zero法更适合抛物线型断面(rRMSE = 0.22)和汛期(rRMSE = 0.35)。此外,当用10 m分辨率的Sentinel-2图像代替30 m的Landsat 5 TM图像时,这些方法在所有时期内对小于90 m的河流的流速估计都有显著改善,显示出使用更精细分辨率的卫星图像估计中等河流流量的巨大潜力。该框架需要一些地面观测数据来估算流量,其Nash-Sutcliffe效率系数(NSE)达到~ 0.9,从而极大地促进了与水文相关的研究,对全球可持续水资源管理具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Landsat 5 TM and UAV images to estimate river discharge with limited ground-based flow velocity and water level observations
River discharge plays an indispensable role in maintaining the stability of the hydrosphere system and eco-environment. Previous methods that utilize satellite imagery to estimate discharge over poorly gauged basins are generally tailored for large rivers and heavily reliant on ground-based measurements. Consequently, uncertainties often escalate when these methods are applied to medium-sized rivers. Based on Landsat 5 Thematic Mapper (TM) and unmanned aerial vehicle (UAV) images, this study proposed a framework for estimating the discharge of large and medium rivers with limited ground observations. It comprises (1) a modified C/M method, which considers the spatial heterogeneity of rivers using single-site observation data, and (2) a newly developed method for estimating river bathymetry with zero discharge measurements (RIBA-zero). Results show that, utilizing the modified C/M method, rivers wider than three times the satellite resolution (i.e., 90 m) exhibit a relative root mean square error (rRMSE) of 0.23 in the velocity estimation. Narrower rivers display a slight increase in the rRMSE (0.41), which is still within an encouraging range. For both types of river widths, the accuracy of flow velocity estimation is higher during high-flow periods compared with the low-flow counterparts. In terms of the flow area estimation, the RIBA-zero method is much more suited for parabola-shaped cross-sections (rRMSE = 0.22) and flood seasons (rRMSE = 0.35). Additionally, when replacing 30-m Landsat 5 TM with 10 m-resolution Sentinel-2 imageries, the approaches make a significant improvement in velocity estimation for rivers narrower than 90 m across all periods, exhibiting great potential to estimate discharge in medium rivers with finer resolution satellite imageries. The framework requires a few ground observations for discharge estimates with the Nash–Sutcliffe efficiency coefficient (NSE) reaching ∼0.9, thereby greatly facilitating hydrology-related studies with profound implications for sustainable water resources management worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信