{"title":"精确地表温度检索的鲁棒框架:将分割窗口集成到知识引导的机器学习方法中","authors":"Yuanliang Cheng, Hua Wu, Zhao-Liang Li, Frank-M. Göttsche, Xingxing Zhang, Xiujuan Li, Huanyu Zhang, Yitao Li","doi":"10.1016/j.rse.2025.114609","DOIUrl":null,"url":null,"abstract":"Land surface temperature (LST) is a crucial parameter of the surface-atmosphere system, driving the water and heat exchange between the surface and the atmosphere. However, existing LST retrieval methods are highly sensitive to input errors. This study proposed a robust framework for retrieving LST, termed SW-NN, which integrates the physics-based Split-Window (SW) algorithm with a data-driven Neural Network (NN). The framework comprises of two main components: (1) a NN model that estimates SW coefficients as functions of key parameters such as brightness temperature (BT), water vapor content (WVC), land surface emissivity (LSE), and viewing zenith angle (VZA); and (2) a SW model that applies these coefficients to compute LST based on physical principles. By embedding the SW algorithm into the NN's loss function, this integrated design ensures that physical relationships guide the training process. The training data for the framework were generated by simulating satellite BT under a broad range of atmospheric and surface conditions using a radiative transfer model. To address the challenge of input errors, the proposed framework incorporates Gaussian noise into the training data to simulate realistic uncertainties in BT, WVC, and LSE. Specifically, noise with standard deviations of 0.05 K, 10 % of the WVC value, and 0.01 was added to BT, WVC, and LSE, respectively. Simulation analysis on an independent test set demonstrates that the proposed framework achieves a theoretical root-mean-square error (RMSE) of 0.60 K under the noise strategy, outperforming standalone NN and SW models. Sensitivity analysis, conducted using the same noise strategy applied during training, indicates that input errors affect LST retrieval by approximately 0.20 K, significantly enhancing the model's generalization and robustness. The proposed framework was also applied to MODIS data to retrieve LST, which was directly validated against global measurements from fifteen sites. Additionally, the proposed framework was compared with the NN method, the generalized split-window (GSW) method (MOD11 LST), and the Temperature Emissivity Separation (TES) method (MOD21 LST). The results showed that the proposed framework achieved an RMSE of 1.99 K, outperforming the NN method (RMSE = 2.08 K) and the GSW method (RMSE = 2.52 K), and performing comparably to the TES method (RMSE = 2.03 K). Further analysis in arid areas, where LSE accuracy is relatively lower, showed that the proposed framework improved the RMSE to 1.94 K compared to MOD11 LST, which had an RMSE of 3.02 K, utilizing the same LSE inputs. The proposed framework leverages the SW model's mechanism and the NN model's nonlinear fitting capability. It also demonstrates high robustness against input error, particularly LSE error. In summary, the proposed framework achieves robust and accurate LST retrieval, offering interpretability and a significant improvement over existing methods designed for sensors with two thermal infrared channels, especially in challenging environmental conditions. The proposed framework is available at <span><span>https://github.com/YL-Cheng-IGSNRR/SW-NN</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"22 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust framework for accurate land surface temperature retrieval: Integrating split-window into knowledge-guided machine learning approach\",\"authors\":\"Yuanliang Cheng, Hua Wu, Zhao-Liang Li, Frank-M. Göttsche, Xingxing Zhang, Xiujuan Li, Huanyu Zhang, Yitao Li\",\"doi\":\"10.1016/j.rse.2025.114609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land surface temperature (LST) is a crucial parameter of the surface-atmosphere system, driving the water and heat exchange between the surface and the atmosphere. However, existing LST retrieval methods are highly sensitive to input errors. This study proposed a robust framework for retrieving LST, termed SW-NN, which integrates the physics-based Split-Window (SW) algorithm with a data-driven Neural Network (NN). The framework comprises of two main components: (1) a NN model that estimates SW coefficients as functions of key parameters such as brightness temperature (BT), water vapor content (WVC), land surface emissivity (LSE), and viewing zenith angle (VZA); and (2) a SW model that applies these coefficients to compute LST based on physical principles. By embedding the SW algorithm into the NN's loss function, this integrated design ensures that physical relationships guide the training process. The training data for the framework were generated by simulating satellite BT under a broad range of atmospheric and surface conditions using a radiative transfer model. To address the challenge of input errors, the proposed framework incorporates Gaussian noise into the training data to simulate realistic uncertainties in BT, WVC, and LSE. Specifically, noise with standard deviations of 0.05 K, 10 % of the WVC value, and 0.01 was added to BT, WVC, and LSE, respectively. Simulation analysis on an independent test set demonstrates that the proposed framework achieves a theoretical root-mean-square error (RMSE) of 0.60 K under the noise strategy, outperforming standalone NN and SW models. Sensitivity analysis, conducted using the same noise strategy applied during training, indicates that input errors affect LST retrieval by approximately 0.20 K, significantly enhancing the model's generalization and robustness. The proposed framework was also applied to MODIS data to retrieve LST, which was directly validated against global measurements from fifteen sites. Additionally, the proposed framework was compared with the NN method, the generalized split-window (GSW) method (MOD11 LST), and the Temperature Emissivity Separation (TES) method (MOD21 LST). The results showed that the proposed framework achieved an RMSE of 1.99 K, outperforming the NN method (RMSE = 2.08 K) and the GSW method (RMSE = 2.52 K), and performing comparably to the TES method (RMSE = 2.03 K). Further analysis in arid areas, where LSE accuracy is relatively lower, showed that the proposed framework improved the RMSE to 1.94 K compared to MOD11 LST, which had an RMSE of 3.02 K, utilizing the same LSE inputs. The proposed framework leverages the SW model's mechanism and the NN model's nonlinear fitting capability. It also demonstrates high robustness against input error, particularly LSE error. In summary, the proposed framework achieves robust and accurate LST retrieval, offering interpretability and a significant improvement over existing methods designed for sensors with two thermal infrared channels, especially in challenging environmental conditions. The proposed framework is available at <span><span>https://github.com/YL-Cheng-IGSNRR/SW-NN</span><svg aria-label=\\\"Opens in new window\\\" focusable=\\\"false\\\" height=\\\"20\\\" viewbox=\\\"0 0 8 8\\\"><path d=\\\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\\\"></path></svg></span>.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2025.114609\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.114609","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A robust framework for accurate land surface temperature retrieval: Integrating split-window into knowledge-guided machine learning approach
Land surface temperature (LST) is a crucial parameter of the surface-atmosphere system, driving the water and heat exchange between the surface and the atmosphere. However, existing LST retrieval methods are highly sensitive to input errors. This study proposed a robust framework for retrieving LST, termed SW-NN, which integrates the physics-based Split-Window (SW) algorithm with a data-driven Neural Network (NN). The framework comprises of two main components: (1) a NN model that estimates SW coefficients as functions of key parameters such as brightness temperature (BT), water vapor content (WVC), land surface emissivity (LSE), and viewing zenith angle (VZA); and (2) a SW model that applies these coefficients to compute LST based on physical principles. By embedding the SW algorithm into the NN's loss function, this integrated design ensures that physical relationships guide the training process. The training data for the framework were generated by simulating satellite BT under a broad range of atmospheric and surface conditions using a radiative transfer model. To address the challenge of input errors, the proposed framework incorporates Gaussian noise into the training data to simulate realistic uncertainties in BT, WVC, and LSE. Specifically, noise with standard deviations of 0.05 K, 10 % of the WVC value, and 0.01 was added to BT, WVC, and LSE, respectively. Simulation analysis on an independent test set demonstrates that the proposed framework achieves a theoretical root-mean-square error (RMSE) of 0.60 K under the noise strategy, outperforming standalone NN and SW models. Sensitivity analysis, conducted using the same noise strategy applied during training, indicates that input errors affect LST retrieval by approximately 0.20 K, significantly enhancing the model's generalization and robustness. The proposed framework was also applied to MODIS data to retrieve LST, which was directly validated against global measurements from fifteen sites. Additionally, the proposed framework was compared with the NN method, the generalized split-window (GSW) method (MOD11 LST), and the Temperature Emissivity Separation (TES) method (MOD21 LST). The results showed that the proposed framework achieved an RMSE of 1.99 K, outperforming the NN method (RMSE = 2.08 K) and the GSW method (RMSE = 2.52 K), and performing comparably to the TES method (RMSE = 2.03 K). Further analysis in arid areas, where LSE accuracy is relatively lower, showed that the proposed framework improved the RMSE to 1.94 K compared to MOD11 LST, which had an RMSE of 3.02 K, utilizing the same LSE inputs. The proposed framework leverages the SW model's mechanism and the NN model's nonlinear fitting capability. It also demonstrates high robustness against input error, particularly LSE error. In summary, the proposed framework achieves robust and accurate LST retrieval, offering interpretability and a significant improvement over existing methods designed for sensors with two thermal infrared channels, especially in challenging environmental conditions. The proposed framework is available at https://github.com/YL-Cheng-IGSNRR/SW-NN.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.