{"title":"代数超曲面间的最优传输","authors":"Paolo Antonini, Fabio Cavalletti, Antonio Lerario","doi":"10.1007/s00039-025-00699-w","DOIUrl":null,"url":null,"abstract":"<p>What is the optimal way to deform a projective hypersurface into another one? In this paper we will answer this question adopting the point of view of measure theory, introducing the optimal transport problem between complex algebraic projective hypersurfaces.</p><p>First, a natural topological embedding of the space of hypersurfaces of a given degree into the space of measures on the projective space is constructed. Then, the optimal transport problem between hypersurfaces is defined through a constrained dynamical formulation, minimizing the energy of absolutely continuous curves which lie on the image of this embedding. In this way an inner Wasserstein distance on the projective space of homogeneous polynomials is introduced. This distance is finer than the Fubini–Study one.</p><p>The innner Wasserstein distance is complete and geodesic: geodesics corresponds to optimal deformations of one algebraic hypersurface into another one. Outside the discriminant this distance is induced by a smooth Riemannian metric, which is the real part of an explicit Hermitian structure. Moreover, this Hermitian structure is Kähler and the corresponding metric is of Weil–Petersson type.</p><p>To prove these results we develop new techniques, which combine complex and symplectic geometry with optimal transport, and which we expect to be relevant on their own.</p><p>We discuss applications on the regularity of the zeroes of a family of multivariate polynomials and on the condition number of polynomial systems solving.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Transport Between Algebraic Hypersurfaces\",\"authors\":\"Paolo Antonini, Fabio Cavalletti, Antonio Lerario\",\"doi\":\"10.1007/s00039-025-00699-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>What is the optimal way to deform a projective hypersurface into another one? In this paper we will answer this question adopting the point of view of measure theory, introducing the optimal transport problem between complex algebraic projective hypersurfaces.</p><p>First, a natural topological embedding of the space of hypersurfaces of a given degree into the space of measures on the projective space is constructed. Then, the optimal transport problem between hypersurfaces is defined through a constrained dynamical formulation, minimizing the energy of absolutely continuous curves which lie on the image of this embedding. In this way an inner Wasserstein distance on the projective space of homogeneous polynomials is introduced. This distance is finer than the Fubini–Study one.</p><p>The innner Wasserstein distance is complete and geodesic: geodesics corresponds to optimal deformations of one algebraic hypersurface into another one. Outside the discriminant this distance is induced by a smooth Riemannian metric, which is the real part of an explicit Hermitian structure. Moreover, this Hermitian structure is Kähler and the corresponding metric is of Weil–Petersson type.</p><p>To prove these results we develop new techniques, which combine complex and symplectic geometry with optimal transport, and which we expect to be relevant on their own.</p><p>We discuss applications on the regularity of the zeroes of a family of multivariate polynomials and on the condition number of polynomial systems solving.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00699-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00699-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
What is the optimal way to deform a projective hypersurface into another one? In this paper we will answer this question adopting the point of view of measure theory, introducing the optimal transport problem between complex algebraic projective hypersurfaces.
First, a natural topological embedding of the space of hypersurfaces of a given degree into the space of measures on the projective space is constructed. Then, the optimal transport problem between hypersurfaces is defined through a constrained dynamical formulation, minimizing the energy of absolutely continuous curves which lie on the image of this embedding. In this way an inner Wasserstein distance on the projective space of homogeneous polynomials is introduced. This distance is finer than the Fubini–Study one.
The innner Wasserstein distance is complete and geodesic: geodesics corresponds to optimal deformations of one algebraic hypersurface into another one. Outside the discriminant this distance is induced by a smooth Riemannian metric, which is the real part of an explicit Hermitian structure. Moreover, this Hermitian structure is Kähler and the corresponding metric is of Weil–Petersson type.
To prove these results we develop new techniques, which combine complex and symplectic geometry with optimal transport, and which we expect to be relevant on their own.
We discuss applications on the regularity of the zeroes of a family of multivariate polynomials and on the condition number of polynomial systems solving.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.