{"title":"有效宇宙弹跳的协变单场公式","authors":"Marcello Miranda","doi":"10.1007/s10714-025-03357-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the feasibility of an effective Friedmann equation in removing the classical Big Bang initial singularity and replacing it with a non-singular bounce occurring at a critical energy density value. In a spatially flat, homogeneous, and isotropic universe, the effective theory is obtained by introducing a function parametrically dependent on the critical energy density. This function measures the deviation from the benchmark theory, which is recovered as the critical energy density approaches infinity. Focusing on the covariant single-field formulation in viable Horndeski gravity, our analysis shows that both the effective and the benchmark theories belong to the same scalar–tensor theory, without any additional propagating degrees of freedom: the cuscuton and extended cuscuton models.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03357-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Covariant single-field formulation of effective cosmological bounces\",\"authors\":\"Marcello Miranda\",\"doi\":\"10.1007/s10714-025-03357-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the feasibility of an effective Friedmann equation in removing the classical Big Bang initial singularity and replacing it with a non-singular bounce occurring at a critical energy density value. In a spatially flat, homogeneous, and isotropic universe, the effective theory is obtained by introducing a function parametrically dependent on the critical energy density. This function measures the deviation from the benchmark theory, which is recovered as the critical energy density approaches infinity. Focusing on the covariant single-field formulation in viable Horndeski gravity, our analysis shows that both the effective and the benchmark theories belong to the same scalar–tensor theory, without any additional propagating degrees of freedom: the cuscuton and extended cuscuton models.\\n</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-025-03357-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03357-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03357-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Covariant single-field formulation of effective cosmological bounces
This study explores the feasibility of an effective Friedmann equation in removing the classical Big Bang initial singularity and replacing it with a non-singular bounce occurring at a critical energy density value. In a spatially flat, homogeneous, and isotropic universe, the effective theory is obtained by introducing a function parametrically dependent on the critical energy density. This function measures the deviation from the benchmark theory, which is recovered as the critical energy density approaches infinity. Focusing on the covariant single-field formulation in viable Horndeski gravity, our analysis shows that both the effective and the benchmark theories belong to the same scalar–tensor theory, without any additional propagating degrees of freedom: the cuscuton and extended cuscuton models.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.