Pravin K. Dahal, Swayamsiddha Maharana, Fil Simovic, Daniel R. Terno
{"title":"视界对象:Kerr-Vaidya解","authors":"Pravin K. Dahal, Swayamsiddha Maharana, Fil Simovic, Daniel R. Terno","doi":"10.1007/s10714-024-03345-2","DOIUrl":null,"url":null,"abstract":"<div><p>Kerr–Vaidya metrics are the simplest dynamical axially-symmetric solutions, all of which violate the null energy condition and thus are consistent with the formation of a trapped region in finite time according to distant observers. We examine different classes of Kerr–Vaidya metrics, and find two which possess spherically-symmetric counterparts that are compatible with the finite formation time of a trapped region. These solutions describe evaporating black holes and expanding white holes. We demonstrate a consistent description of accreting black holes based on the ingoing Kerr–Vaidya metric with increasing mass, and show that the model can be extended to cases where the angular momentum to mass ratio varies. For such metrics we describe conditions on their dynamical evolution required to maintain asymptotic flatness.Pathologies are also identified in the evaporating white hole geometry in the form of an intermediate singularity accessible by timelike observers. We also describe a generalization of the equivalence between Rindler and Schwarzschild horizons to Kerr–Vaidya black holes, and describe the relevant geometric constructions.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03345-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Horizon-bound objects: Kerr–Vaidya solutions\",\"authors\":\"Pravin K. Dahal, Swayamsiddha Maharana, Fil Simovic, Daniel R. Terno\",\"doi\":\"10.1007/s10714-024-03345-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kerr–Vaidya metrics are the simplest dynamical axially-symmetric solutions, all of which violate the null energy condition and thus are consistent with the formation of a trapped region in finite time according to distant observers. We examine different classes of Kerr–Vaidya metrics, and find two which possess spherically-symmetric counterparts that are compatible with the finite formation time of a trapped region. These solutions describe evaporating black holes and expanding white holes. We demonstrate a consistent description of accreting black holes based on the ingoing Kerr–Vaidya metric with increasing mass, and show that the model can be extended to cases where the angular momentum to mass ratio varies. For such metrics we describe conditions on their dynamical evolution required to maintain asymptotic flatness.Pathologies are also identified in the evaporating white hole geometry in the form of an intermediate singularity accessible by timelike observers. We also describe a generalization of the equivalence between Rindler and Schwarzschild horizons to Kerr–Vaidya black holes, and describe the relevant geometric constructions.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03345-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03345-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03345-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Kerr–Vaidya metrics are the simplest dynamical axially-symmetric solutions, all of which violate the null energy condition and thus are consistent with the formation of a trapped region in finite time according to distant observers. We examine different classes of Kerr–Vaidya metrics, and find two which possess spherically-symmetric counterparts that are compatible with the finite formation time of a trapped region. These solutions describe evaporating black holes and expanding white holes. We demonstrate a consistent description of accreting black holes based on the ingoing Kerr–Vaidya metric with increasing mass, and show that the model can be extended to cases where the angular momentum to mass ratio varies. For such metrics we describe conditions on their dynamical evolution required to maintain asymptotic flatness.Pathologies are also identified in the evaporating white hole geometry in the form of an intermediate singularity accessible by timelike observers. We also describe a generalization of the equivalence between Rindler and Schwarzschild horizons to Kerr–Vaidya black holes, and describe the relevant geometric constructions.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.