William Ortolá Leonard, Zachary Slepian and Jiamin Hou
{"title":"红移空间星系四点相关函数模型","authors":"William Ortolá Leonard, Zachary Slepian and Jiamin Hou","doi":"10.1088/1475-7516/2025/01/090","DOIUrl":null,"url":null,"abstract":"The field of cosmology is entering an epoch of unparalleled wealth of observational data thanks to galaxy surveys such as DESI, Euclid, and Roman. Therefore, it is essential to have a firm theoretical basis that allows the effective analysis of the data. With this purpose, we compute the nonlinear, gravitationally-induced connected galaxy 4-point correlation function (4PCF) at the tree level in Standard Perturbation Theory (SPT), including redshift-space distortions (RSD). We begin from the trispectrum and take its inverse Fourier transform into configuration space, exploiting the isotropic basis functions of [1]. We ultimately reduce the configuration-space expression to low-dimensional radial integrals of the power spectrum. This model will enable the use of the BAO feature in the connected 4PCF to sharpen our constraints on the expansion history of the Universe. It will also offer an additional avenue for determining the galaxy bias parameters, and thus tighten our cosmological constraints by breaking degeneracies. Survey geometry can be corrected in the 4PCF, and many systematics are localized, which is an advantage over data analysis with the trispectrum.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"15 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for the redshift-space galaxy 4-point correlation function\",\"authors\":\"William Ortolá Leonard, Zachary Slepian and Jiamin Hou\",\"doi\":\"10.1088/1475-7516/2025/01/090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of cosmology is entering an epoch of unparalleled wealth of observational data thanks to galaxy surveys such as DESI, Euclid, and Roman. Therefore, it is essential to have a firm theoretical basis that allows the effective analysis of the data. With this purpose, we compute the nonlinear, gravitationally-induced connected galaxy 4-point correlation function (4PCF) at the tree level in Standard Perturbation Theory (SPT), including redshift-space distortions (RSD). We begin from the trispectrum and take its inverse Fourier transform into configuration space, exploiting the isotropic basis functions of [1]. We ultimately reduce the configuration-space expression to low-dimensional radial integrals of the power spectrum. This model will enable the use of the BAO feature in the connected 4PCF to sharpen our constraints on the expansion history of the Universe. It will also offer an additional avenue for determining the galaxy bias parameters, and thus tighten our cosmological constraints by breaking degeneracies. Survey geometry can be corrected in the 4PCF, and many systematics are localized, which is an advantage over data analysis with the trispectrum.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/090\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/090","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A model for the redshift-space galaxy 4-point correlation function
The field of cosmology is entering an epoch of unparalleled wealth of observational data thanks to galaxy surveys such as DESI, Euclid, and Roman. Therefore, it is essential to have a firm theoretical basis that allows the effective analysis of the data. With this purpose, we compute the nonlinear, gravitationally-induced connected galaxy 4-point correlation function (4PCF) at the tree level in Standard Perturbation Theory (SPT), including redshift-space distortions (RSD). We begin from the trispectrum and take its inverse Fourier transform into configuration space, exploiting the isotropic basis functions of [1]. We ultimately reduce the configuration-space expression to low-dimensional radial integrals of the power spectrum. This model will enable the use of the BAO feature in the connected 4PCF to sharpen our constraints on the expansion history of the Universe. It will also offer an additional avenue for determining the galaxy bias parameters, and thus tighten our cosmological constraints by breaking degeneracies. Survey geometry can be corrected in the 4PCF, and many systematics are localized, which is an advantage over data analysis with the trispectrum.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.