{"title":"无监督高光谱图像超分辨率的增强深度图像先验","authors":"Jiaxin Li;Ke Zheng;Lianru Gao;Zhu Han;Zhi Li;Jocelyn Chanussot","doi":"10.1109/TGRS.2025.3531646","DOIUrl":null,"url":null,"abstract":"Depending on a large-scale paired dataset of low-resolution hyperspectral image (LrHSI), high-resolution multispectral image (HrMSI), and corresponding high-resolution hyperspectral image (HrHSI), the supervised paradigm has achieved impressive performance in the hyperspectral image super-resolution (HISR). However, the intrinsic data-intensive manner hinders its further application in real scenarios. Fortunately, deep image prior (DIP) allows us to achieve unsupervised super-resolution (SR) by solely utilizing degraded observations. However, its potential to accurately model complicated hyperspectral priors is still not fully exploited due to the following two factors: 1) existing methods tend to reconstruct the unknown HrHSI directly from a randomly generated noise, leaving it hard to leverage the scene-relevant information for prior learning and 2) the vanilla architecture is handcrafted for the generator network, which shows limitations in feature representation and thus fails to characterize the complicated image properties. To unleash the potential of DIP for the HISR task, we propose an enhanced DIP network, called EDIP-Net, by addressing the aforementioned impediments. Specifically, EDIP-Net is built with a two-stage four-component scheme, with a zero-shot learning (ZSL) stage for input image establishment and a deep image generation (DIG) stage for prior learning. First, we exploit the cross-scale spectral relationship inside the observations and thus design a degradation learning network to generate paired training samples from the observations themselves. As such, two image-coarse estimations are derived in a ZSL manner by learning an interactive spectral learning network. By replacing random noise with two estimations, we design a double U-shape architecture for the generator network to capture their hyperspectral prior, each independently generating one HrHSI candidate. Under this premise, we further propose a degradation-aware decision fusion strategy to integrate the optimal results in a pixel-to-pixel manner. Extensive experiments demonstrate our superiority in achieving high-quality SR performance. The code will be available at <uri>https://github.com/JiaxinLiCAS</uri>.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-18"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution\",\"authors\":\"Jiaxin Li;Ke Zheng;Lianru Gao;Zhu Han;Zhi Li;Jocelyn Chanussot\",\"doi\":\"10.1109/TGRS.2025.3531646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on a large-scale paired dataset of low-resolution hyperspectral image (LrHSI), high-resolution multispectral image (HrMSI), and corresponding high-resolution hyperspectral image (HrHSI), the supervised paradigm has achieved impressive performance in the hyperspectral image super-resolution (HISR). However, the intrinsic data-intensive manner hinders its further application in real scenarios. Fortunately, deep image prior (DIP) allows us to achieve unsupervised super-resolution (SR) by solely utilizing degraded observations. However, its potential to accurately model complicated hyperspectral priors is still not fully exploited due to the following two factors: 1) existing methods tend to reconstruct the unknown HrHSI directly from a randomly generated noise, leaving it hard to leverage the scene-relevant information for prior learning and 2) the vanilla architecture is handcrafted for the generator network, which shows limitations in feature representation and thus fails to characterize the complicated image properties. To unleash the potential of DIP for the HISR task, we propose an enhanced DIP network, called EDIP-Net, by addressing the aforementioned impediments. Specifically, EDIP-Net is built with a two-stage four-component scheme, with a zero-shot learning (ZSL) stage for input image establishment and a deep image generation (DIG) stage for prior learning. First, we exploit the cross-scale spectral relationship inside the observations and thus design a degradation learning network to generate paired training samples from the observations themselves. As such, two image-coarse estimations are derived in a ZSL manner by learning an interactive spectral learning network. By replacing random noise with two estimations, we design a double U-shape architecture for the generator network to capture their hyperspectral prior, each independently generating one HrHSI candidate. Under this premise, we further propose a degradation-aware decision fusion strategy to integrate the optimal results in a pixel-to-pixel manner. Extensive experiments demonstrate our superiority in achieving high-quality SR performance. The code will be available at <uri>https://github.com/JiaxinLiCAS</uri>.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-18\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10845210/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10845210/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution
Depending on a large-scale paired dataset of low-resolution hyperspectral image (LrHSI), high-resolution multispectral image (HrMSI), and corresponding high-resolution hyperspectral image (HrHSI), the supervised paradigm has achieved impressive performance in the hyperspectral image super-resolution (HISR). However, the intrinsic data-intensive manner hinders its further application in real scenarios. Fortunately, deep image prior (DIP) allows us to achieve unsupervised super-resolution (SR) by solely utilizing degraded observations. However, its potential to accurately model complicated hyperspectral priors is still not fully exploited due to the following two factors: 1) existing methods tend to reconstruct the unknown HrHSI directly from a randomly generated noise, leaving it hard to leverage the scene-relevant information for prior learning and 2) the vanilla architecture is handcrafted for the generator network, which shows limitations in feature representation and thus fails to characterize the complicated image properties. To unleash the potential of DIP for the HISR task, we propose an enhanced DIP network, called EDIP-Net, by addressing the aforementioned impediments. Specifically, EDIP-Net is built with a two-stage four-component scheme, with a zero-shot learning (ZSL) stage for input image establishment and a deep image generation (DIG) stage for prior learning. First, we exploit the cross-scale spectral relationship inside the observations and thus design a degradation learning network to generate paired training samples from the observations themselves. As such, two image-coarse estimations are derived in a ZSL manner by learning an interactive spectral learning network. By replacing random noise with two estimations, we design a double U-shape architecture for the generator network to capture their hyperspectral prior, each independently generating one HrHSI candidate. Under this premise, we further propose a degradation-aware decision fusion strategy to integrate the optimal results in a pixel-to-pixel manner. Extensive experiments demonstrate our superiority in achieving high-quality SR performance. The code will be available at https://github.com/JiaxinLiCAS.
期刊介绍:
IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.