{"title":"基于混合可信度学习的数据驱动电力系统动态安全评估可信度研究","authors":"Qiaoqiao Li;Yan Xu;Chao Ren;Rui Zhang","doi":"10.1109/TPWRS.2025.3532124","DOIUrl":null,"url":null,"abstract":"This letter proposed a hybrid credibility learning method for data-driven Dynamic Security Assessment (DSA), aiming to enhance the trustworthiness of DSA results under out-of-distribution changing system conditions. The proposed method integrates multiple credibility criteria as learning inputs, combining model consistency—reflected through the output distribution of ensemble learners—with novel indicators of data disparities, namely the Degree of Outlier (DOO) and One-sample Maximum Mean Discrepancy (O-MMD). Moreover, the credibility model benefits from training on a specifically designed out-of-distribution dataset which is further reinforced through misclassified DSA instances. This letter also provides a comprehensive comparison of existing credible DSA methods via the proposed trustworthiness evaluation index. Simulation results on the benchmark testing system show that the proposed method can achieve the best trade-off between DSA accuracy and credibility under various extreme system conditions.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"40 3","pages":"2791-2794"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Trustworthiness of Data-Driven Power System Dynamic Security Assessment via Hybrid Credibility Learning\",\"authors\":\"Qiaoqiao Li;Yan Xu;Chao Ren;Rui Zhang\",\"doi\":\"10.1109/TPWRS.2025.3532124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposed a hybrid credibility learning method for data-driven Dynamic Security Assessment (DSA), aiming to enhance the trustworthiness of DSA results under out-of-distribution changing system conditions. The proposed method integrates multiple credibility criteria as learning inputs, combining model consistency—reflected through the output distribution of ensemble learners—with novel indicators of data disparities, namely the Degree of Outlier (DOO) and One-sample Maximum Mean Discrepancy (O-MMD). Moreover, the credibility model benefits from training on a specifically designed out-of-distribution dataset which is further reinforced through misclassified DSA instances. This letter also provides a comprehensive comparison of existing credible DSA methods via the proposed trustworthiness evaluation index. Simulation results on the benchmark testing system show that the proposed method can achieve the best trade-off between DSA accuracy and credibility under various extreme system conditions.\",\"PeriodicalId\":13373,\"journal\":{\"name\":\"IEEE Transactions on Power Systems\",\"volume\":\"40 3\",\"pages\":\"2791-2794\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848137/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10848137/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing Trustworthiness of Data-Driven Power System Dynamic Security Assessment via Hybrid Credibility Learning
This letter proposed a hybrid credibility learning method for data-driven Dynamic Security Assessment (DSA), aiming to enhance the trustworthiness of DSA results under out-of-distribution changing system conditions. The proposed method integrates multiple credibility criteria as learning inputs, combining model consistency—reflected through the output distribution of ensemble learners—with novel indicators of data disparities, namely the Degree of Outlier (DOO) and One-sample Maximum Mean Discrepancy (O-MMD). Moreover, the credibility model benefits from training on a specifically designed out-of-distribution dataset which is further reinforced through misclassified DSA instances. This letter also provides a comprehensive comparison of existing credible DSA methods via the proposed trustworthiness evaluation index. Simulation results on the benchmark testing system show that the proposed method can achieve the best trade-off between DSA accuracy and credibility under various extreme system conditions.
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.