树木的非定向光学指数

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuan-Hsun Lo, Hung-Lin Fu, Yijin Zhang, Wing Shing Wong
{"title":"树木的非定向光学指数","authors":"Yuan-Hsun Lo, Hung-Lin Fu, Yijin Zhang, Wing Shing Wong","doi":"10.1007/s10878-024-01255-2","DOIUrl":null,"url":null,"abstract":"<p>For a connected graph <i>G</i>, an instance <i>I</i> is a set of pairs of vertices and a corresponding routing <i>R</i> is a set of paths specified for all vertex-pairs in <i>I</i>. Let <span>\\(\\mathfrak {R}_I\\)</span> be the collection of all routings with respect to <i>I</i>. The undirected optical index of <i>G</i> with respect to <i>I</i> refers to the minimum integer <i>k</i> to guarantee the existence of a mapping <span>\\(\\phi :R\\rightarrow \\{1,2,\\ldots ,k\\}\\)</span>, such that <span>\\(\\phi (P)\\ne \\phi (P')\\)</span> if <i>P</i> and <span>\\(P'\\)</span> have common edge(s), over all routings <span>\\(R\\in \\mathfrak {R}_I\\)</span>. A natural lower bound of the undirected optical index is the edge-forwarding index, which is defined to be the minimum of the maximum edge-load over all possible routings. Let <i>w</i>(<i>G</i>, <i>I</i>) and <span>\\(\\pi (G,I)\\)</span> denote the undirected optical index and edge-forwarding index with respect to <i>I</i>, respectively. In this paper, we derive the inequality <span>\\(w(T,I_A)&lt;\\frac{3}{2}\\pi (T,I_A)\\)</span> for any tree <i>T</i>, where <span>\\(I_A:=\\{\\{x,y\\}:\\,x,y\\in V(T)\\}\\)</span> is the all-to-all instance.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"62 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The undirected optical indices of trees\",\"authors\":\"Yuan-Hsun Lo, Hung-Lin Fu, Yijin Zhang, Wing Shing Wong\",\"doi\":\"10.1007/s10878-024-01255-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a connected graph <i>G</i>, an instance <i>I</i> is a set of pairs of vertices and a corresponding routing <i>R</i> is a set of paths specified for all vertex-pairs in <i>I</i>. Let <span>\\\\(\\\\mathfrak {R}_I\\\\)</span> be the collection of all routings with respect to <i>I</i>. The undirected optical index of <i>G</i> with respect to <i>I</i> refers to the minimum integer <i>k</i> to guarantee the existence of a mapping <span>\\\\(\\\\phi :R\\\\rightarrow \\\\{1,2,\\\\ldots ,k\\\\}\\\\)</span>, such that <span>\\\\(\\\\phi (P)\\\\ne \\\\phi (P')\\\\)</span> if <i>P</i> and <span>\\\\(P'\\\\)</span> have common edge(s), over all routings <span>\\\\(R\\\\in \\\\mathfrak {R}_I\\\\)</span>. A natural lower bound of the undirected optical index is the edge-forwarding index, which is defined to be the minimum of the maximum edge-load over all possible routings. Let <i>w</i>(<i>G</i>, <i>I</i>) and <span>\\\\(\\\\pi (G,I)\\\\)</span> denote the undirected optical index and edge-forwarding index with respect to <i>I</i>, respectively. In this paper, we derive the inequality <span>\\\\(w(T,I_A)&lt;\\\\frac{3}{2}\\\\pi (T,I_A)\\\\)</span> for any tree <i>T</i>, where <span>\\\\(I_A:=\\\\{\\\\{x,y\\\\}:\\\\,x,y\\\\in V(T)\\\\}\\\\)</span> is the all-to-all instance.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01255-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01255-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于连通图G,实例I是顶点对的集合,对应的路由R是为I中所有顶点对指定的路径集合,设\(\mathfrak {R}_I\)是关于I的所有路由的集合,G关于I的无向光学指数指的是保证映射\(\phi :R\rightarrow \{1,2,\ldots ,k\}\)存在的最小整数k,使得\(\phi (P)\ne \phi (P')\)如果P和\(P'\)有公共边,则所有路由\(R\in \mathfrak {R}_I\)。无向光指数的自然下界是边缘转发指数,它被定义为所有可能路由上最大边缘负载的最小值。令w(G, I)和\(\pi (G,I)\)分别表示相对于I的无向光学指数和边转发指数。本文导出了任意树T的不等式\(w(T,I_A)<\frac{3}{2}\pi (T,I_A)\),其中\(I_A:=\{\{x,y\}:\,x,y\in V(T)\}\)为全对全实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The undirected optical indices of trees

For a connected graph G, an instance I is a set of pairs of vertices and a corresponding routing R is a set of paths specified for all vertex-pairs in I. Let \(\mathfrak {R}_I\) be the collection of all routings with respect to I. The undirected optical index of G with respect to I refers to the minimum integer k to guarantee the existence of a mapping \(\phi :R\rightarrow \{1,2,\ldots ,k\}\), such that \(\phi (P)\ne \phi (P')\) if P and \(P'\) have common edge(s), over all routings \(R\in \mathfrak {R}_I\). A natural lower bound of the undirected optical index is the edge-forwarding index, which is defined to be the minimum of the maximum edge-load over all possible routings. Let w(GI) and \(\pi (G,I)\) denote the undirected optical index and edge-forwarding index with respect to I, respectively. In this paper, we derive the inequality \(w(T,I_A)<\frac{3}{2}\pi (T,I_A)\) for any tree T, where \(I_A:=\{\{x,y\}:\,x,y\in V(T)\}\) is the all-to-all instance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信