$$(K_{1}\vee {P_{t})}$$ -具有最小边数的饱和图

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinze Hu, Shengjin Ji, Qing Cui
{"title":"$$(K_{1}\\vee {P_{t})}$$ -具有最小边数的饱和图","authors":"Jinze Hu, Shengjin Ji, Qing Cui","doi":"10.1007/s10878-024-01256-1","DOIUrl":null,"url":null,"abstract":"<p>For a fixed graph <i>F</i>, a graph <i>G</i> is <i>F</i>-saturated if <i>G</i> does not contain <i>F</i> as a subgraph, but adding any edge in <span>\\(E(\\overline{G})\\)</span> will result in a copy of <i>F</i>. The minimum size of an <i>F</i>-saturated graph of order <i>n</i> is called the saturation number of <i>F</i>, denoted by <i>sat</i>(<i>n</i>, <i>F</i>). In this paper, we are interested in saturation problem of graph <span>\\(K_1\\vee {P_t}\\)</span> for <span>\\(t\\ge 2\\)</span>. As some known results, <span>\\(sat(n,K_1\\vee {P_t})\\)</span> is determined for <span>\\(2\\le t\\le 4\\)</span>. We will show that <span>\\(sat(n,K_1\\vee {P_t})=(n-1)+sat(n-1,P_t)\\)</span> for <span>\\(t\\ge 5\\)</span> and <i>n</i> sufficiently large. Moreover, <span>\\((K_1\\vee {P_t})\\)</span>-saturated graphs with <span>\\(sat(n,K_1\\vee {P_t})\\)</span> edges are characterized.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"71 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$(K_{1}\\\\vee {P_{t})}$$ -saturated graphs with minimum number of edges\",\"authors\":\"Jinze Hu, Shengjin Ji, Qing Cui\",\"doi\":\"10.1007/s10878-024-01256-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a fixed graph <i>F</i>, a graph <i>G</i> is <i>F</i>-saturated if <i>G</i> does not contain <i>F</i> as a subgraph, but adding any edge in <span>\\\\(E(\\\\overline{G})\\\\)</span> will result in a copy of <i>F</i>. The minimum size of an <i>F</i>-saturated graph of order <i>n</i> is called the saturation number of <i>F</i>, denoted by <i>sat</i>(<i>n</i>, <i>F</i>). In this paper, we are interested in saturation problem of graph <span>\\\\(K_1\\\\vee {P_t}\\\\)</span> for <span>\\\\(t\\\\ge 2\\\\)</span>. As some known results, <span>\\\\(sat(n,K_1\\\\vee {P_t})\\\\)</span> is determined for <span>\\\\(2\\\\le t\\\\le 4\\\\)</span>. We will show that <span>\\\\(sat(n,K_1\\\\vee {P_t})=(n-1)+sat(n-1,P_t)\\\\)</span> for <span>\\\\(t\\\\ge 5\\\\)</span> and <i>n</i> sufficiently large. Moreover, <span>\\\\((K_1\\\\vee {P_t})\\\\)</span>-saturated graphs with <span>\\\\(sat(n,K_1\\\\vee {P_t})\\\\)</span> edges are characterized.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01256-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01256-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于固定图F,如果图G不包含F作为子图,则图G是F饱和的,但在\(E(\overline{G})\)中添加任何边都会得到F的副本。n阶的F饱和图的最小大小称为F的饱和数,记为sat(n, F)。本文对\(t\ge 2\)的图\(K_1\vee {P_t}\)的饱和问题感兴趣。正如一些已知的结果,\(sat(n,K_1\vee {P_t})\)被确定为\(2\le t\le 4\)。我们会证明\(sat(n,K_1\vee {P_t})=(n-1)+sat(n-1,P_t)\)对于\(t\ge 5\)和n足够大。此外,还刻画了具有\(sat(n,K_1\vee {P_t})\)边的\((K_1\vee {P_t})\) -饱和图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$(K_{1}\vee {P_{t})}$$ -saturated graphs with minimum number of edges

For a fixed graph F, a graph G is F-saturated if G does not contain F as a subgraph, but adding any edge in \(E(\overline{G})\) will result in a copy of F. The minimum size of an F-saturated graph of order n is called the saturation number of F, denoted by sat(nF). In this paper, we are interested in saturation problem of graph \(K_1\vee {P_t}\) for \(t\ge 2\). As some known results, \(sat(n,K_1\vee {P_t})\) is determined for \(2\le t\le 4\). We will show that \(sat(n,K_1\vee {P_t})=(n-1)+sat(n-1,P_t)\) for \(t\ge 5\) and n sufficiently large. Moreover, \((K_1\vee {P_t})\)-saturated graphs with \(sat(n,K_1\vee {P_t})\) edges are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信