配体诱导原子精密Au₂₅纳米团簇电催化活性的变化

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lipan Luo, Xia Zhou, Yuping Chen, Fang Sun, Likai Wang and Qing Tang
{"title":"配体诱导原子精密Au₂₅纳米团簇电催化活性的变化","authors":"Lipan Luo, Xia Zhou, Yuping Chen, Fang Sun, Likai Wang and Qing Tang","doi":"10.1039/D4SC07181F","DOIUrl":null,"url":null,"abstract":"<p >Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au<small><sub>25</sub></small>(SR)<small><sub>18</sub></small>]<small><sup>−</sup></small> nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity <em>versus</em> hydrophobicity in modulating the interface dynamics and electrocatalytic performance. Our first-principles calculations revealed that Au<small><sub>25</sub></small> protected by hydrophilic –SCH<small><sub>2</sub></small>COOH ligands exhibits faster kinetics in stripping the thiolate ligand and better HER activity due to enhanced proton transfer facilitated by boosted interface hydrogen bonding. Conversely, Au<small><sub>25</sub></small> protected by hydrophobic –SCH<small><sub>2</sub></small>CH<small><sub>3</sub></small> ligands demonstrates enhanced CO<small><sub>2</sub></small>RR performance by minimizing water interference to stabilize the key *COOH intermediate and lower the barrier for CO formation. Experimental validation using synthesized hydrophilic and hydrophobic ligand-protected Au<small><sub>25</sub></small> nanoclusters (NCs), such as [Au<small><sub>25</sub></small>(MPA)<small><sub>18</sub></small>]<small><sup>−</sup></small> (MPA = mercaptopropionic acid), [Au<small><sub>25</sub></small>(MHA)<small><sub>18</sub></small>]<small><sup>−</sup></small> (MHA = 6-mercaptohexanoic acid), and [Au<small><sub>25</sub></small>(SC<small><sub>6</sub></small>H<small><sub>13</sub></small>)<small><sub>18</sub></small>]<small><sup>−</sup></small>, confirms these findings, where the hydrophilic ligand-protected Au<small><sub>25</sub></small> NCs exhibit better activity and stability in the HER, while the hydrophobic ligand-protected Au<small><sub>25</sub></small> NCs achieve higher faradaic efficiency and current density in the CO<small><sub>2</sub></small>RR. The mechanistic insights in this study provide valuable guidance for the rational design of surface microenvironments in efficient nanocatalysts for sustainable energy applications.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 8","pages":" 3598-3610"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07181f?page=search","citationCount":"0","resultStr":"{\"title\":\"Ligand-induced changes in the electrocatalytic activity of atomically precise Au25 nanoclusters†\",\"authors\":\"Lipan Luo, Xia Zhou, Yuping Chen, Fang Sun, Likai Wang and Qing Tang\",\"doi\":\"10.1039/D4SC07181F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au<small><sub>25</sub></small>(SR)<small><sub>18</sub></small>]<small><sup>−</sup></small> nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity <em>versus</em> hydrophobicity in modulating the interface dynamics and electrocatalytic performance. Our first-principles calculations revealed that Au<small><sub>25</sub></small> protected by hydrophilic –SCH<small><sub>2</sub></small>COOH ligands exhibits faster kinetics in stripping the thiolate ligand and better HER activity due to enhanced proton transfer facilitated by boosted interface hydrogen bonding. Conversely, Au<small><sub>25</sub></small> protected by hydrophobic –SCH<small><sub>2</sub></small>CH<small><sub>3</sub></small> ligands demonstrates enhanced CO<small><sub>2</sub></small>RR performance by minimizing water interference to stabilize the key *COOH intermediate and lower the barrier for CO formation. Experimental validation using synthesized hydrophilic and hydrophobic ligand-protected Au<small><sub>25</sub></small> nanoclusters (NCs), such as [Au<small><sub>25</sub></small>(MPA)<small><sub>18</sub></small>]<small><sup>−</sup></small> (MPA = mercaptopropionic acid), [Au<small><sub>25</sub></small>(MHA)<small><sub>18</sub></small>]<small><sup>−</sup></small> (MHA = 6-mercaptohexanoic acid), and [Au<small><sub>25</sub></small>(SC<small><sub>6</sub></small>H<small><sub>13</sub></small>)<small><sub>18</sub></small>]<small><sup>−</sup></small>, confirms these findings, where the hydrophilic ligand-protected Au<small><sub>25</sub></small> NCs exhibit better activity and stability in the HER, while the hydrophobic ligand-protected Au<small><sub>25</sub></small> NCs achieve higher faradaic efficiency and current density in the CO<small><sub>2</sub></small>RR. The mechanistic insights in this study provide valuable guidance for the rational design of surface microenvironments in efficient nanocatalysts for sustainable energy applications.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 8\",\"pages\":\" 3598-3610\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07181f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07181f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07181f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子精密金纳米团簇在析氢反应(HER)和二氧化碳还原反应(CO2RR)等关键电催化过程中作为模型电催化剂显示出巨大的前景。虽然配体对这些纳米簇的电子性质的影响是公认的,但配体对其电催化性能的影响却很少被探索。本文以[Au25(SR)18]-纳米簇为原型模型,证明了配体亲水性与疏水性在调节界面动力学和电催化性能方面的重要性。我们的第一性原理计算表明,亲水性-SCH2COOH配体保护的Au25在剥离硫酸盐配体时具有更快的动力学,并且由于增强的界面氢键促进了质子转移,从而表现出更好的HER活性。相反,疏水性-SCH2CH3配体保护的Au25通过减少水干扰来稳定关键*COOH中间体并降低CO的形成障碍,从而增强了CO2RR性能。利用合成的亲疏配体保护的Au25纳米团簇(NCs),如[Au25(MPA)18]- (MPA =巯基丙酸)、[Au25(MHA)18]- (MHA = 6-巯基己酸)和[Au25(SC6H13)18]-进行实验验证,证实了这些发现,亲水性配体保护的Au25纳米团簇在HER中表现出更好的活性和稳定性,而疏水性配体保护的Au25纳米团簇在CO2RR中具有更高的法拉第效率和电流密度。本研究的机理见解为可持续能源应用中高效纳米催化剂表面微环境的合理设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ligand-induced changes in the electrocatalytic activity of atomically precise Au25 nanoclusters†

Ligand-induced changes in the electrocatalytic activity of atomically precise Au25 nanoclusters†

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au25(SR)18] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity versus hydrophobicity in modulating the interface dynamics and electrocatalytic performance. Our first-principles calculations revealed that Au25 protected by hydrophilic –SCH2COOH ligands exhibits faster kinetics in stripping the thiolate ligand and better HER activity due to enhanced proton transfer facilitated by boosted interface hydrogen bonding. Conversely, Au25 protected by hydrophobic –SCH2CH3 ligands demonstrates enhanced CO2RR performance by minimizing water interference to stabilize the key *COOH intermediate and lower the barrier for CO formation. Experimental validation using synthesized hydrophilic and hydrophobic ligand-protected Au25 nanoclusters (NCs), such as [Au25(MPA)18] (MPA = mercaptopropionic acid), [Au25(MHA)18] (MHA = 6-mercaptohexanoic acid), and [Au25(SC6H13)18], confirms these findings, where the hydrophilic ligand-protected Au25 NCs exhibit better activity and stability in the HER, while the hydrophobic ligand-protected Au25 NCs achieve higher faradaic efficiency and current density in the CO2RR. The mechanistic insights in this study provide valuable guidance for the rational design of surface microenvironments in efficient nanocatalysts for sustainable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信