12族元素静态偶极极化率中的相对论和电子相关效应

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
YingXing Cheng
{"title":"12族元素静态偶极极化率中的相对论和电子相关效应","authors":"YingXing Cheng","doi":"10.1039/D4CP04754K","DOIUrl":null,"url":null,"abstract":"<p >In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin–orbit coupling (SOC), and fully relativistic Dirac–Coulomb contributions. The final recommended polarizability values are 37.95 ± 0.77 a.u. for Zn, 45.68 ± 1.21 a.u. for Cd, 34.04 ± 0.68 a.u. for Hg, and 27.92 ± 0.28 a.u. for Cn. These results are in excellent agreement with the 2018 Table of static dipole polarizabilities for neutral atoms [P. Schwerdtfeger and J. K. Nagle, <em>Mol. Phys.</em>, 2019, <strong>117</strong>, 1200] and provide reduced uncertainties for Cd and Cn. Our analysis shows that scalar-relativistic effects dominate the relativistic corrections, with SOC contributions found to be negligible. The role of electron correlation is thoroughly examined across the non-relativistic, scalar-relativistic, and fully relativistic Dirac–Coulomb regimes, underscoring its critical importance in achieving accurate polarizability predictions.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 6","pages":" 3430-3441"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements†\",\"authors\":\"YingXing Cheng\",\"doi\":\"10.1039/D4CP04754K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin–orbit coupling (SOC), and fully relativistic Dirac–Coulomb contributions. The final recommended polarizability values are 37.95 ± 0.77 a.u. for Zn, 45.68 ± 1.21 a.u. for Cd, 34.04 ± 0.68 a.u. for Hg, and 27.92 ± 0.28 a.u. for Cn. These results are in excellent agreement with the 2018 Table of static dipole polarizabilities for neutral atoms [P. Schwerdtfeger and J. K. Nagle, <em>Mol. Phys.</em>, 2019, <strong>117</strong>, 1200] and provide reduced uncertainties for Cd and Cn. Our analysis shows that scalar-relativistic effects dominate the relativistic corrections, with SOC contributions found to be negligible. The role of electron correlation is thoroughly examined across the non-relativistic, scalar-relativistic, and fully relativistic Dirac–Coulomb regimes, underscoring its critical importance in achieving accurate polarizability predictions.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 6\",\"pages\":\" 3430-3441\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04754k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04754k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们报告了使用有限场方法结合相对论耦合簇方法对12族元素的静态偶极极化率进行了综合计算,包括单,双和摄动三重激励。系统地研究了相对论效应,包括标量相对论、自旋轨道耦合(SOC)和完全相对论的狄拉克-库仑贡献。最终推荐的极化率值为:Zn为$37.95 \pm 0.77$ a.u., Cd为$45.68 \pm 1.21$ a.u., Hg为$34.04 \pm 0.68$ a.u., Cn为$27.92 \pm 0.28$ a.u.。这些结果与2018年中性原子静态偶极极化率表[Mol. Phys]非常吻合。\textbf{117}, 1200(2019)],并降低了Cd和Cn的不确定性。我们的分析表明,尺度相对论效应主导了相对论修正,而SOC的贡献可以忽略不计。电子相关的作用在非相对论、标量相对论和完全相对论的狄拉克-库仑体系中得到了彻底的检验,强调了它在实现准确极化率预测中的关键重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements†

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements†

In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin–orbit coupling (SOC), and fully relativistic Dirac–Coulomb contributions. The final recommended polarizability values are 37.95 ± 0.77 a.u. for Zn, 45.68 ± 1.21 a.u. for Cd, 34.04 ± 0.68 a.u. for Hg, and 27.92 ± 0.28 a.u. for Cn. These results are in excellent agreement with the 2018 Table of static dipole polarizabilities for neutral atoms [P. Schwerdtfeger and J. K. Nagle, Mol. Phys., 2019, 117, 1200] and provide reduced uncertainties for Cd and Cn. Our analysis shows that scalar-relativistic effects dominate the relativistic corrections, with SOC contributions found to be negligible. The role of electron correlation is thoroughly examined across the non-relativistic, scalar-relativistic, and fully relativistic Dirac–Coulomb regimes, underscoring its critical importance in achieving accurate polarizability predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信