{"title":"具有初始奇异性的非线性分数阶微分方程的改进分数阶预测-校正方法","authors":"Jianfei Huang, Junlan Lv, Sadia Arshad","doi":"10.1007/s13540-025-00371-y","DOIUrl":null,"url":null,"abstract":"<p>The solution and source term of nonlinear fractional differential equations (NFDEs) with initial values generally have the initial singularity. As is known that numerical methods for NFDEs usually occur the phenomenon of order reduction due to the existence of initial singularity. In this paper, an improved fractional predictor-corrector (PC) method is developed for NFDEs based on the technique of variable transformation. This improved fractional PC method can achieve the optimal convergence order, i.e., the <span>\\(1+\\alpha \\)</span> order convergence rate for fractional order <span>\\(\\alpha \\in (0,1)\\)</span>, of the classical fractional PC method under the high smoothness requirement on the solution and source term. Furthermore, the detailed error analysis also exhibits the relationship between the convergence rate of the improved fractional PC method and the regularities of the solution and source term. Finally, the theoretical error estimate is verified through numerical experiments.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"56 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved fractional predictor-corrector method for nonlinear fractional differential equations with initial singularity\",\"authors\":\"Jianfei Huang, Junlan Lv, Sadia Arshad\",\"doi\":\"10.1007/s13540-025-00371-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The solution and source term of nonlinear fractional differential equations (NFDEs) with initial values generally have the initial singularity. As is known that numerical methods for NFDEs usually occur the phenomenon of order reduction due to the existence of initial singularity. In this paper, an improved fractional predictor-corrector (PC) method is developed for NFDEs based on the technique of variable transformation. This improved fractional PC method can achieve the optimal convergence order, i.e., the <span>\\\\(1+\\\\alpha \\\\)</span> order convergence rate for fractional order <span>\\\\(\\\\alpha \\\\in (0,1)\\\\)</span>, of the classical fractional PC method under the high smoothness requirement on the solution and source term. Furthermore, the detailed error analysis also exhibits the relationship between the convergence rate of the improved fractional PC method and the regularities of the solution and source term. Finally, the theoretical error estimate is verified through numerical experiments.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00371-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00371-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An improved fractional predictor-corrector method for nonlinear fractional differential equations with initial singularity
The solution and source term of nonlinear fractional differential equations (NFDEs) with initial values generally have the initial singularity. As is known that numerical methods for NFDEs usually occur the phenomenon of order reduction due to the existence of initial singularity. In this paper, an improved fractional predictor-corrector (PC) method is developed for NFDEs based on the technique of variable transformation. This improved fractional PC method can achieve the optimal convergence order, i.e., the \(1+\alpha \) order convergence rate for fractional order \(\alpha \in (0,1)\), of the classical fractional PC method under the high smoothness requirement on the solution and source term. Furthermore, the detailed error analysis also exhibits the relationship between the convergence rate of the improved fractional PC method and the regularities of the solution and source term. Finally, the theoretical error estimate is verified through numerical experiments.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.