{"title":"密码指令集扩展原型的信息泄漏评估","authors":"Aruna Jayasena;Richard Bachmann;Prabhat Mishra","doi":"10.1109/TIFS.2025.3531239","DOIUrl":null,"url":null,"abstract":"Software based cryptographic implementations provide flexibility but they face performance limitations. In contrast, hardware based cryptographic accelerators utilize application-specific customization to provide real-time security solutions. Cryptographic instruction-set extensions (CISE) combine the advantages of both hardware and software based solutions to provide higher performance combined with the flexibility of atomic-level cryptographic operations. While CISE is widely used to develop security solutions, side-channel analysis of CISE-based devices is in its infancy. Specifically, it is important to evaluate whether the power usage and electromagnetic emissions of CISE-based devices have any correlation with its internal operations, which an adversary can exploit to deduce cryptographic secrets. In this paper, we propose a test vector leakage assessment framework to evaluate the pre-silicon prototypes at the early stages of the design life-cycle. Specifically, we first identify functional units with the potential for leaking information through power side-channel signatures and then evaluate them on system prototypes by generating the necessary firmware to maximize the side-channel signature. Our experimental results on two RISC-V based cryptographic extensions, RISCV-CRYPTO and XCRYPTO, demonstrated that seven out of eight prototype AES- and SHA-related functional units are vulnerable to leaking cryptographic secrets through their power side-channel signature even in full system mode with a statistical significance of <inline-formula> <tex-math>$\\alpha = 0.05$ </tex-math></inline-formula>.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1551-1565"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CiseLeaks: Information Leakage Assessment of Cryptographic Instruction Set Extension Prototypes\",\"authors\":\"Aruna Jayasena;Richard Bachmann;Prabhat Mishra\",\"doi\":\"10.1109/TIFS.2025.3531239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software based cryptographic implementations provide flexibility but they face performance limitations. In contrast, hardware based cryptographic accelerators utilize application-specific customization to provide real-time security solutions. Cryptographic instruction-set extensions (CISE) combine the advantages of both hardware and software based solutions to provide higher performance combined with the flexibility of atomic-level cryptographic operations. While CISE is widely used to develop security solutions, side-channel analysis of CISE-based devices is in its infancy. Specifically, it is important to evaluate whether the power usage and electromagnetic emissions of CISE-based devices have any correlation with its internal operations, which an adversary can exploit to deduce cryptographic secrets. In this paper, we propose a test vector leakage assessment framework to evaluate the pre-silicon prototypes at the early stages of the design life-cycle. Specifically, we first identify functional units with the potential for leaking information through power side-channel signatures and then evaluate them on system prototypes by generating the necessary firmware to maximize the side-channel signature. Our experimental results on two RISC-V based cryptographic extensions, RISCV-CRYPTO and XCRYPTO, demonstrated that seven out of eight prototype AES- and SHA-related functional units are vulnerable to leaking cryptographic secrets through their power side-channel signature even in full system mode with a statistical significance of <inline-formula> <tex-math>$\\\\alpha = 0.05$ </tex-math></inline-formula>.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"1551-1565\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10844934/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10844934/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
CiseLeaks: Information Leakage Assessment of Cryptographic Instruction Set Extension Prototypes
Software based cryptographic implementations provide flexibility but they face performance limitations. In contrast, hardware based cryptographic accelerators utilize application-specific customization to provide real-time security solutions. Cryptographic instruction-set extensions (CISE) combine the advantages of both hardware and software based solutions to provide higher performance combined with the flexibility of atomic-level cryptographic operations. While CISE is widely used to develop security solutions, side-channel analysis of CISE-based devices is in its infancy. Specifically, it is important to evaluate whether the power usage and electromagnetic emissions of CISE-based devices have any correlation with its internal operations, which an adversary can exploit to deduce cryptographic secrets. In this paper, we propose a test vector leakage assessment framework to evaluate the pre-silicon prototypes at the early stages of the design life-cycle. Specifically, we first identify functional units with the potential for leaking information through power side-channel signatures and then evaluate them on system prototypes by generating the necessary firmware to maximize the side-channel signature. Our experimental results on two RISC-V based cryptographic extensions, RISCV-CRYPTO and XCRYPTO, demonstrated that seven out of eight prototype AES- and SHA-related functional units are vulnerable to leaking cryptographic secrets through their power side-channel signature even in full system mode with a statistical significance of $\alpha = 0.05$ .
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features