基于共识算法的微电网低脆弱性二次控制

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Junjie Xiao;Lu Wang;Pavol Bauer;Zian Qin
{"title":"基于共识算法的微电网低脆弱性二次控制","authors":"Junjie Xiao;Lu Wang;Pavol Bauer;Zian Qin","doi":"10.1109/TII.2024.3523566","DOIUrl":null,"url":null,"abstract":"Consensus algorithm-based secondary control, such as virtual impedance, is typically used to achieve power-sharing and ensure stable operation in microgrids. The introduction of communication, however, increases the system's vulnerability. Communication failure, e.g., under cyber attack or disruption, can lead to a huge loss. To solve this, this article proposes a signal reconstruction approach for the miscommunicated signals. The power-sharing convergence, both in normal conditions and under communication failure, is analyzed via the Lyapunov method. The feasibility and effectiveness of the proposed approach are validated on a lab-scale microgrid.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 4","pages":"3196-3205"},"PeriodicalIF":9.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consensus Algorithm-Based Secondary Control With Low Vulnerability in Microgrids\",\"authors\":\"Junjie Xiao;Lu Wang;Pavol Bauer;Zian Qin\",\"doi\":\"10.1109/TII.2024.3523566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consensus algorithm-based secondary control, such as virtual impedance, is typically used to achieve power-sharing and ensure stable operation in microgrids. The introduction of communication, however, increases the system's vulnerability. Communication failure, e.g., under cyber attack or disruption, can lead to a huge loss. To solve this, this article proposes a signal reconstruction approach for the miscommunicated signals. The power-sharing convergence, both in normal conditions and under communication failure, is analyzed via the Lyapunov method. The feasibility and effectiveness of the proposed approach are validated on a lab-scale microgrid.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 4\",\"pages\":\"3196-3205\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10845014/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10845014/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于共识算法的二次控制,如虚拟阻抗,通常用于实现微电网的电力共享和稳定运行。然而,通信的引入增加了系统的脆弱性。通信失败,例如在网络攻击或中断下,可能导致巨大的损失。为了解决这一问题,本文提出了一种针对误传信号的信号重构方法。利用李亚普诺夫方法分析了正常情况下和通信故障情况下的功率共享收敛性。在实验室规模的微电网上验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Consensus Algorithm-Based Secondary Control With Low Vulnerability in Microgrids
Consensus algorithm-based secondary control, such as virtual impedance, is typically used to achieve power-sharing and ensure stable operation in microgrids. The introduction of communication, however, increases the system's vulnerability. Communication failure, e.g., under cyber attack or disruption, can lead to a huge loss. To solve this, this article proposes a signal reconstruction approach for the miscommunicated signals. The power-sharing convergence, both in normal conditions and under communication failure, is analyzed via the Lyapunov method. The feasibility and effectiveness of the proposed approach are validated on a lab-scale microgrid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信