Shubham Soni, Rachel J Skow, Stephen Foulkes, Mark J Haykowsky, Jason R B Dyck
{"title":"酮体对心力衰竭运动不耐受的治疗潜力:超越心脏","authors":"Shubham Soni, Rachel J Skow, Stephen Foulkes, Mark J Haykowsky, Jason R B Dyck","doi":"10.1093/cvr/cvaf004","DOIUrl":null,"url":null,"abstract":"Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration. While many studies have primarily focused on the cardiac benefits of ketone therapy in HF, ketones can have numerous favorable effects in other organs such as the vasculature and skeletal muscle. Importantly, vascular and skeletal muscle dysfunction are also heavily implicated in the reduced exercise tolerance, the hallmark feature in HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction, suggesting that some of the benefits observed in HF in response to ketone therapy may involve these non-cardiac pathways. Thus, we review the evidence suggesting how ketone therapy may be beneficial in improving cardiovascular and skeletal muscle function in HF and identify various potential mechanisms that may be important in the beneficial non-cardiac effects of ketones in HF.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"98 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potential of ketone bodies on exercise intolerance in heart failure: looking beyond the heart\",\"authors\":\"Shubham Soni, Rachel J Skow, Stephen Foulkes, Mark J Haykowsky, Jason R B Dyck\",\"doi\":\"10.1093/cvr/cvaf004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration. While many studies have primarily focused on the cardiac benefits of ketone therapy in HF, ketones can have numerous favorable effects in other organs such as the vasculature and skeletal muscle. Importantly, vascular and skeletal muscle dysfunction are also heavily implicated in the reduced exercise tolerance, the hallmark feature in HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction, suggesting that some of the benefits observed in HF in response to ketone therapy may involve these non-cardiac pathways. Thus, we review the evidence suggesting how ketone therapy may be beneficial in improving cardiovascular and skeletal muscle function in HF and identify various potential mechanisms that may be important in the beneficial non-cardiac effects of ketones in HF.\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvaf004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Therapeutic potential of ketone bodies on exercise intolerance in heart failure: looking beyond the heart
Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration. While many studies have primarily focused on the cardiac benefits of ketone therapy in HF, ketones can have numerous favorable effects in other organs such as the vasculature and skeletal muscle. Importantly, vascular and skeletal muscle dysfunction are also heavily implicated in the reduced exercise tolerance, the hallmark feature in HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction, suggesting that some of the benefits observed in HF in response to ketone therapy may involve these non-cardiac pathways. Thus, we review the evidence suggesting how ketone therapy may be beneficial in improving cardiovascular and skeletal muscle function in HF and identify various potential mechanisms that may be important in the beneficial non-cardiac effects of ketones in HF.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases