具有高阶相互作用的多路多时间尺度网络中的爆炸同步

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
T. Laptyeva , S. Jalan , M. Ivanchenko
{"title":"具有高阶相互作用的多路多时间尺度网络中的爆炸同步","authors":"T. Laptyeva ,&nbsp;S. Jalan ,&nbsp;M. Ivanchenko","doi":"10.1016/j.chaos.2025.116003","DOIUrl":null,"url":null,"abstract":"<div><div>Explosive synchronization refers to an abrupt (first order) transition to non-zero value of phase order parameter in oscillatory networks, underpinned by the bistability of synchronous and asynchronous states. Growing evidence suggests that this phenomenon might be no less general then the celebrated Kuramoto scenario that belongs to the second order universality class. Importantly, the recent examples demonstrate that explosive synchronization can occur for global higher-order coupling without specific requirements on the individual oscillator dynamics or dynamics-network correlations. Here we demonstrate a rich picture of explosive (de)synchronization transition in multiplex networks, where it is sufficient to have a single random sparsely connected layer with higher-order coupling terms (and not necessarily in the synchronization regime on its own) and the other layer being a regular lattice without own phase transitions at all. Characteristic timescales in the layers have to be different. Moreover, explosive synchronization emerges even when the random layer has only low-order pairwise coupling, although the hysteresis interval becomes narrow and explosive desynchronization is no longer observed. The explosive transition persists with increasing the system size. The relevance to the normal and pathological dynamics of neural-glial networks is pointed out.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 116003"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explosive synchronization in multiplex multiple timescale networks with higher-order interactions\",\"authors\":\"T. Laptyeva ,&nbsp;S. Jalan ,&nbsp;M. Ivanchenko\",\"doi\":\"10.1016/j.chaos.2025.116003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Explosive synchronization refers to an abrupt (first order) transition to non-zero value of phase order parameter in oscillatory networks, underpinned by the bistability of synchronous and asynchronous states. Growing evidence suggests that this phenomenon might be no less general then the celebrated Kuramoto scenario that belongs to the second order universality class. Importantly, the recent examples demonstrate that explosive synchronization can occur for global higher-order coupling without specific requirements on the individual oscillator dynamics or dynamics-network correlations. Here we demonstrate a rich picture of explosive (de)synchronization transition in multiplex networks, where it is sufficient to have a single random sparsely connected layer with higher-order coupling terms (and not necessarily in the synchronization regime on its own) and the other layer being a regular lattice without own phase transitions at all. Characteristic timescales in the layers have to be different. Moreover, explosive synchronization emerges even when the random layer has only low-order pairwise coupling, although the hysteresis interval becomes narrow and explosive desynchronization is no longer observed. The explosive transition persists with increasing the system size. The relevance to the normal and pathological dynamics of neural-glial networks is pointed out.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 116003\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925000165\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000165","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

爆炸同步是指振荡网络中相序参数突然(一阶)跃迁到非零值,以同步和异步状态的双稳定为基础。越来越多的证据表明,这种现象的普遍性可能不亚于著名的Kuramoto情景(属于二阶普遍性类)。重要的是,最近的例子表明,爆炸同步可以发生在全局高阶耦合中,而无需对单个振荡器动力学或动态网络相关性有特定要求。在这里,我们展示了多路网络中爆炸性(非)同步跃迁的丰富图景,其中有一个具有高阶耦合项的随机稀疏连接层(不一定在其自身的同步状态中)和另一层是一个没有自身相变的规则晶格就足够了。各层的特征时标必须不同。此外,即使随机层只有低阶成对耦合,也会出现爆炸同步,尽管滞后区间变窄,不再观察到爆炸不同步。爆炸性转变随着系统规模的增加而持续存在。指出了其与神经胶质网络正常和病理动力学的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explosive synchronization in multiplex multiple timescale networks with higher-order interactions
Explosive synchronization refers to an abrupt (first order) transition to non-zero value of phase order parameter in oscillatory networks, underpinned by the bistability of synchronous and asynchronous states. Growing evidence suggests that this phenomenon might be no less general then the celebrated Kuramoto scenario that belongs to the second order universality class. Importantly, the recent examples demonstrate that explosive synchronization can occur for global higher-order coupling without specific requirements on the individual oscillator dynamics or dynamics-network correlations. Here we demonstrate a rich picture of explosive (de)synchronization transition in multiplex networks, where it is sufficient to have a single random sparsely connected layer with higher-order coupling terms (and not necessarily in the synchronization regime on its own) and the other layer being a regular lattice without own phase transitions at all. Characteristic timescales in the layers have to be different. Moreover, explosive synchronization emerges even when the random layer has only low-order pairwise coupling, although the hysteresis interval becomes narrow and explosive desynchronization is no longer observed. The explosive transition persists with increasing the system size. The relevance to the normal and pathological dynamics of neural-glial networks is pointed out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信