用于时变平流扩散方程的 SUPG 稳定时间-DG 有限元和虚拟元

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
L. Beirão da Veiga , F. Dassi , S. Gómez
{"title":"用于时变平流扩散方程的 SUPG 稳定时间-DG 有限元和虚拟元","authors":"L. Beirão da Veiga ,&nbsp;F. Dassi ,&nbsp;S. Gómez","doi":"10.1016/j.cma.2024.117722","DOIUrl":null,"url":null,"abstract":"<div><div>We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensions that validate our theoretical results.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117722"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPG-stabilized time-DG finite and virtual elements for the time-dependent advection–diffusion equation\",\"authors\":\"L. Beirão da Veiga ,&nbsp;F. Dassi ,&nbsp;S. Gómez\",\"doi\":\"10.1016/j.cma.2024.117722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensions that validate our theoretical results.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"436 \",\"pages\":\"Article 117722\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524009782\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009782","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将有限元或虚元空间离散化与逆风不连续Galerkin时间步进相结合,对时变平流扩散方程的完全离散格式进行了稳定性和收敛性分析。利用时空流线逆风彼得罗夫-伽辽金项稳定该方法。更准确地说,我们证明了该方法是稳定的,常数与扩散系数无关,这保证了该方法在对流和扩散占主导地位的情况下的鲁棒性。此外,对于能量范数误差,我们证明了两种情况下的最优收敛速率。所提出的分析的一个重要特征是控制在完整的L2(0,T;L2(Ω))范数中,而不需要在模型中引入人工反应项。最后给出了(3+1)维的数值实验,验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUPG-stabilized time-DG finite and virtual elements for the time-dependent advection–diffusion equation
We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full L2(0,T;L2(Ω)) norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in (3+1)-dimensions that validate our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信