小镜头高光谱图像分类知识精馏中粒度不匹配的克服

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Wu;Zhaohui Xue;Shaoguang Zhou;Hongjun Su
{"title":"小镜头高光谱图像分类知识精馏中粒度不匹配的克服","authors":"Hao Wu;Zhaohui Xue;Shaoguang Zhou;Hongjun Su","doi":"10.1109/TGRS.2025.3530614","DOIUrl":null,"url":null,"abstract":"Hyperspectral image classification (HSIC) often struggles due to the scarcity of labeled samples. Knowledge distillation (KD), including self-distillation (SD) where a model learns from its own predictions, has emerged as a promising solution. However, existing distillation methods in HSIC face a “granularity mismatch” problem as they rely on coarse, patch-level data for fine-grained, pixel-level classification, which introduces label noise and causes misclassification. To overcome this issue, we propose central spectral self-distillation (CSSD), a framework that isolates pure spectral information at the patch center and leverages it for SD. CSSD consists of three main components. First, the backbone network separates spectral and spatial feature processing to extract pure central spectral features. Second, a spectral refiner module enhances these spectral features before integrating spatial context. Finally, an SD loss aligns the final predictions with the central spectral guidance, ensuring granularity matching at the pixel level. The experimental results on five hyperspectral datasets demonstrate the effectiveness of CSSD under few-shot conditions. The source code will be available online at <uri>https://github.com/ZhaohuiXue/CSSD</uri>.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-17"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming Granularity Mismatch in Knowledge Distillation for Few-Shot Hyperspectral Image Classification\",\"authors\":\"Hao Wu;Zhaohui Xue;Shaoguang Zhou;Hongjun Su\",\"doi\":\"10.1109/TGRS.2025.3530614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image classification (HSIC) often struggles due to the scarcity of labeled samples. Knowledge distillation (KD), including self-distillation (SD) where a model learns from its own predictions, has emerged as a promising solution. However, existing distillation methods in HSIC face a “granularity mismatch” problem as they rely on coarse, patch-level data for fine-grained, pixel-level classification, which introduces label noise and causes misclassification. To overcome this issue, we propose central spectral self-distillation (CSSD), a framework that isolates pure spectral information at the patch center and leverages it for SD. CSSD consists of three main components. First, the backbone network separates spectral and spatial feature processing to extract pure central spectral features. Second, a spectral refiner module enhances these spectral features before integrating spatial context. Finally, an SD loss aligns the final predictions with the central spectral guidance, ensuring granularity matching at the pixel level. The experimental results on five hyperspectral datasets demonstrate the effectiveness of CSSD under few-shot conditions. The source code will be available online at <uri>https://github.com/ZhaohuiXue/CSSD</uri>.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-17\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843769/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10843769/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于标记样本的稀缺性,高光谱图像分类(HSIC)经常陷入困境。知识蒸馏(KD),包括模型从自己的预测中学习的自蒸馏(SD),已经成为一种很有前途的解决方案。然而,现有的HSIC蒸馏方法面临着“粒度不匹配”的问题,因为它们依赖于粗的、补丁级的数据来进行细粒度的、像素级的分类,这引入了标签噪声并导致误分类。为了克服这一问题,我们提出了一种中心光谱自蒸馏(CSSD)框架,该框架在斑块中心分离纯光谱信息并利用它进行SD。CSSD由三个主要部分组成。首先,骨干网分离光谱和空间特征处理,提取纯粹的中心光谱特征;其次,在整合空间背景之前,光谱细化模块对这些光谱特征进行增强。最后,SD损失将最终预测与中心光谱指导对齐,确保像素级的粒度匹配。在5个高光谱数据集上的实验结果证明了CSSD在少射点条件下的有效性。源代码可在https://github.com/ZhaohuiXue/CSSD上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming Granularity Mismatch in Knowledge Distillation for Few-Shot Hyperspectral Image Classification
Hyperspectral image classification (HSIC) often struggles due to the scarcity of labeled samples. Knowledge distillation (KD), including self-distillation (SD) where a model learns from its own predictions, has emerged as a promising solution. However, existing distillation methods in HSIC face a “granularity mismatch” problem as they rely on coarse, patch-level data for fine-grained, pixel-level classification, which introduces label noise and causes misclassification. To overcome this issue, we propose central spectral self-distillation (CSSD), a framework that isolates pure spectral information at the patch center and leverages it for SD. CSSD consists of three main components. First, the backbone network separates spectral and spatial feature processing to extract pure central spectral features. Second, a spectral refiner module enhances these spectral features before integrating spatial context. Finally, an SD loss aligns the final predictions with the central spectral guidance, ensuring granularity matching at the pixel level. The experimental results on five hyperspectral datasets demonstrate the effectiveness of CSSD under few-shot conditions. The source code will be available online at https://github.com/ZhaohuiXue/CSSD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信