Zehao Lin, Qingyang Fan, Qing Pang, Jin Zhong Zhang, Dangli Gao, Yuling Song
{"title":"十几个预测具有低焓和强阳光吸收的SiGe合金用于光伏应用","authors":"Zehao Lin, Qingyang Fan, Qing Pang, Jin Zhong Zhang, Dangli Gao, Yuling Song","doi":"10.1039/d4cp03927k","DOIUrl":null,"url":null,"abstract":"Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG<small><sup>2</sup></small>), and 12 stable SiGe structures in 2–8 stacking orders were predicted. All 12 stable SiGe crystals exhibit a popular bandwidth of 1.06–1.19 eV, approaching the optimal Shockley Queisser limit (≈1.4 eV). Among these, 6 structures showed quasi-direct band gaps. Considering their potential photovoltaic applications, we systematically studied the changes in their enthalpy, stability, mechanical stability (elastic moduli), lattice parameters, band structures, and light absorption under a stress load of up to 20 GPa. These new SiGe crystals featured relatively low enthalpies (even as low as 0.009 eV per atom), and good stability and mechanical properties. In addition, the absorption spectra of these materials demonstrated a high absorption intensity for the solar spectrum that was approximately 3 times higher than that of conventional diamond silicon, even under a 20 GPa stress. The present study uses the predicted <strong>2–8H</strong> SiGe to provide new insights into the photovoltaic applications of SiGe alloy structures.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dozen predicted SiGe alloys with low enthalpies and strong absorption of sunlight for photovoltaic applications\",\"authors\":\"Zehao Lin, Qingyang Fan, Qing Pang, Jin Zhong Zhang, Dangli Gao, Yuling Song\",\"doi\":\"10.1039/d4cp03927k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG<small><sup>2</sup></small>), and 12 stable SiGe structures in 2–8 stacking orders were predicted. All 12 stable SiGe crystals exhibit a popular bandwidth of 1.06–1.19 eV, approaching the optimal Shockley Queisser limit (≈1.4 eV). Among these, 6 structures showed quasi-direct band gaps. Considering their potential photovoltaic applications, we systematically studied the changes in their enthalpy, stability, mechanical stability (elastic moduli), lattice parameters, band structures, and light absorption under a stress load of up to 20 GPa. These new SiGe crystals featured relatively low enthalpies (even as low as 0.009 eV per atom), and good stability and mechanical properties. In addition, the absorption spectra of these materials demonstrated a high absorption intensity for the solar spectrum that was approximately 3 times higher than that of conventional diamond silicon, even under a 20 GPa stress. The present study uses the predicted <strong>2–8H</strong> SiGe to provide new insights into the photovoltaic applications of SiGe alloy structures.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp03927k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03927k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A dozen predicted SiGe alloys with low enthalpies and strong absorption of sunlight for photovoltaic applications
Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG2), and 12 stable SiGe structures in 2–8 stacking orders were predicted. All 12 stable SiGe crystals exhibit a popular bandwidth of 1.06–1.19 eV, approaching the optimal Shockley Queisser limit (≈1.4 eV). Among these, 6 structures showed quasi-direct band gaps. Considering their potential photovoltaic applications, we systematically studied the changes in their enthalpy, stability, mechanical stability (elastic moduli), lattice parameters, band structures, and light absorption under a stress load of up to 20 GPa. These new SiGe crystals featured relatively low enthalpies (even as low as 0.009 eV per atom), and good stability and mechanical properties. In addition, the absorption spectra of these materials demonstrated a high absorption intensity for the solar spectrum that was approximately 3 times higher than that of conventional diamond silicon, even under a 20 GPa stress. The present study uses the predicted 2–8H SiGe to provide new insights into the photovoltaic applications of SiGe alloy structures.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.