利用自编码器在ROS中通过LoRa进行激光雷达数据的潜在表示和有效传输

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Carlos Daniel de Sousa Bezerra;Alisson Assis Cardoso;Flávio Henrique Teles Vieira
{"title":"利用自编码器在ROS中通过LoRa进行激光雷达数据的潜在表示和有效传输","authors":"Carlos Daniel de Sousa Bezerra;Alisson Assis Cardoso;Flávio Henrique Teles Vieira","doi":"10.1109/JIOT.2025.3530241","DOIUrl":null,"url":null,"abstract":"This article presents a methodology for transmitting light detection and ranging (LiDAR) sensor data, which is frequently used in robots and autonomous vehicles, utilizing robot operation system (ROS) and LoRaWAN. A primary challenge is the limited bandwidth of the long range (LoRa) network, which restricts data transmission from high-volume sensors like LiDAR. To address this issue, we propose an edge processing technique that employs autoencoders to compress the LiDAR data into a latent representation for efficient transmission. Our method achieves an 82% reduction in the original LiDAR data size, allowing it to fit within constraints of LoRaWAN’s limited payload capacity. Additionally, our approach enables the reconstruction of the ROS topic on the receiver side, effectively extending the capability of ROS from local networks to wide-area networks (WANs). The results demonstrate the feasibility of LiDAR data transmission over LoRaWAN using our method, thereby supporting the deployment of LiDAR sensors in environments with constrained networks and limited mobile connectivity.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 5","pages":"4579-4590"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Autoencoders for Latent Representation and Efficient Transmission of LiDAR Data via LoRa in ROS\",\"authors\":\"Carlos Daniel de Sousa Bezerra;Alisson Assis Cardoso;Flávio Henrique Teles Vieira\",\"doi\":\"10.1109/JIOT.2025.3530241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a methodology for transmitting light detection and ranging (LiDAR) sensor data, which is frequently used in robots and autonomous vehicles, utilizing robot operation system (ROS) and LoRaWAN. A primary challenge is the limited bandwidth of the long range (LoRa) network, which restricts data transmission from high-volume sensors like LiDAR. To address this issue, we propose an edge processing technique that employs autoencoders to compress the LiDAR data into a latent representation for efficient transmission. Our method achieves an 82% reduction in the original LiDAR data size, allowing it to fit within constraints of LoRaWAN’s limited payload capacity. Additionally, our approach enables the reconstruction of the ROS topic on the receiver side, effectively extending the capability of ROS from local networks to wide-area networks (WANs). The results demonstrate the feasibility of LiDAR data transmission over LoRaWAN using our method, thereby supporting the deployment of LiDAR sensors in environments with constrained networks and limited mobile connectivity.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 5\",\"pages\":\"4579-4590\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843396/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843396/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用机器人操作系统(ROS)和LoRaWAN传输机器人和自动驾驶汽车中经常使用的光探测和测距(LiDAR)传感器数据的方法。一个主要的挑战是远程(LoRa)网络的带宽有限,这限制了像LiDAR这样的大批量传感器的数据传输。为了解决这个问题,我们提出了一种边缘处理技术,该技术使用自动编码器将激光雷达数据压缩成有效传输的潜在表示。我们的方法将原始激光雷达数据大小减少了82%,使其能够适应LoRaWAN有限有效载荷能力的限制。此外,我们的方法能够在接收端重建ROS主题,有效地将ROS的能力从局域网络扩展到广域网(wan)。结果证明了使用我们的方法在LoRaWAN上传输激光雷达数据的可行性,从而支持在网络受限和移动连接受限的环境中部署激光雷达传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Autoencoders for Latent Representation and Efficient Transmission of LiDAR Data via LoRa in ROS
This article presents a methodology for transmitting light detection and ranging (LiDAR) sensor data, which is frequently used in robots and autonomous vehicles, utilizing robot operation system (ROS) and LoRaWAN. A primary challenge is the limited bandwidth of the long range (LoRa) network, which restricts data transmission from high-volume sensors like LiDAR. To address this issue, we propose an edge processing technique that employs autoencoders to compress the LiDAR data into a latent representation for efficient transmission. Our method achieves an 82% reduction in the original LiDAR data size, allowing it to fit within constraints of LoRaWAN’s limited payload capacity. Additionally, our approach enables the reconstruction of the ROS topic on the receiver side, effectively extending the capability of ROS from local networks to wide-area networks (WANs). The results demonstrate the feasibility of LiDAR data transmission over LoRaWAN using our method, thereby supporting the deployment of LiDAR sensors in environments with constrained networks and limited mobile connectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信