设计固体电解质相间结构,提高锂离子电池的高倍率循环和温度适应性

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhongming Wang, Zhiyuan He, Zhongsheng Wang, Kecheng Long, Jixu Yang, Shaozhen Huang, Zhibin Wu, Lin Mei, Libao Chen
{"title":"设计固体电解质相间结构,提高锂离子电池的高倍率循环和温度适应性","authors":"Zhongming Wang, Zhiyuan He, Zhongsheng Wang, Kecheng Long, Jixu Yang, Shaozhen Huang, Zhibin Wu, Lin Mei, Libao Chen","doi":"10.1039/d4sc07916g","DOIUrl":null,"url":null,"abstract":"In overcoming the barrier of rapid Li+ transfer in lithium-ion batteries under extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tunning the solvation structure and designing kinetically-stable electrode-electrolyte interface to achieve high-rate charging and discharging remains challenges. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize a stability and robust solid electrolyte interface film (SEI), realizing the rapid Li+ transfer process and the structural integrity of electrode materials. The NFSALi-derived thinner, fluorine-rich, and sulfur-containing SEI in nitrile-assistant carbonate electrolytes effectively suppresses decomposition of valeronitrile solvent during high-rate cycling and wide-temperature operation (−40~55 ℃). More importantly, the graphiteǁLiNi0.5Co0.2Mn0.3O2 pouch cell demonstrates a capacity retention of 66.88% after 200 high-rate cycles with 3 C charging and 5 C discharging at a high-temperature condition of 55 °C. This work provides significant guidance to develop inorganic-rich interfacial chemistry for lithium-ion batteries under extreme operating conditions.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"96 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the Solid Electrolyte Interphase for Enhancing High-Rate Cycling and Temperature Adaptability of Lithium-Ion Batteries\",\"authors\":\"Zhongming Wang, Zhiyuan He, Zhongsheng Wang, Kecheng Long, Jixu Yang, Shaozhen Huang, Zhibin Wu, Lin Mei, Libao Chen\",\"doi\":\"10.1039/d4sc07916g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In overcoming the barrier of rapid Li+ transfer in lithium-ion batteries under extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tunning the solvation structure and designing kinetically-stable electrode-electrolyte interface to achieve high-rate charging and discharging remains challenges. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize a stability and robust solid electrolyte interface film (SEI), realizing the rapid Li+ transfer process and the structural integrity of electrode materials. The NFSALi-derived thinner, fluorine-rich, and sulfur-containing SEI in nitrile-assistant carbonate electrolytes effectively suppresses decomposition of valeronitrile solvent during high-rate cycling and wide-temperature operation (−40~55 ℃). More importantly, the graphiteǁLiNi0.5Co0.2Mn0.3O2 pouch cell demonstrates a capacity retention of 66.88% after 200 high-rate cycles with 3 C charging and 5 C discharging at a high-temperature condition of 55 °C. This work provides significant guidance to develop inorganic-rich interfacial chemistry for lithium-ion batteries under extreme operating conditions.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4sc07916g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07916g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在克服极端温度下锂离子电池中Li+快速转移的障碍中,脱溶过程和界面电荷输运起着关键作用。然而,调整溶剂化结构和设计动力学稳定的电极-电解质界面以实现高倍率充放电仍然是一个挑战。本文引入非氟-1-丁烷磺酸锂(NFSALi)添加剂,优化固体电解质界面膜(SEI)的稳定性和鲁棒性,实现Li+的快速转移过程和电极材料的结构完整性。在高速率循环和宽温度(- 40~55℃)条件下,由nfsli衍生的稀释剂、富氟、含硫的腈辅助碳酸盐电解质SEI能有效抑制戊腈溶剂的分解。更重要的是,graphiteǁLiNi0.5Co0.2Mn0.3O2袋状电池在55°C高温条件下,在3℃充电和5℃放电200次高倍率循环后,容量保持率达到66.88%。这项工作对开发极端工作条件下锂离子电池的富无机界面化学具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering the Solid Electrolyte Interphase for Enhancing High-Rate Cycling and Temperature Adaptability of Lithium-Ion Batteries
In overcoming the barrier of rapid Li+ transfer in lithium-ion batteries under extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tunning the solvation structure and designing kinetically-stable electrode-electrolyte interface to achieve high-rate charging and discharging remains challenges. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize a stability and robust solid electrolyte interface film (SEI), realizing the rapid Li+ transfer process and the structural integrity of electrode materials. The NFSALi-derived thinner, fluorine-rich, and sulfur-containing SEI in nitrile-assistant carbonate electrolytes effectively suppresses decomposition of valeronitrile solvent during high-rate cycling and wide-temperature operation (−40~55 ℃). More importantly, the graphiteǁLiNi0.5Co0.2Mn0.3O2 pouch cell demonstrates a capacity retention of 66.88% after 200 high-rate cycles with 3 C charging and 5 C discharging at a high-temperature condition of 55 °C. This work provides significant guidance to develop inorganic-rich interfacial chemistry for lithium-ion batteries under extreme operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信