{"title":"补充维生素D对1型糖尿病模型动脉粥样硬化性心血管疾病的保护作用","authors":"Ayman Saeed Alhazmi","doi":"10.2174/0118715303341809241022110317","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.</p><p><strong>Methods: </strong>A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment. For each mouse in the three groups, measurements were taken of body weight, blood glucose levels, glycated hemoglobin (HbA1c), lipid profile, cardiac enzymes, troponin I, adropin, nitric oxide (NO), endothelin-1, and Vascular endothelial growth factor (VEGF). In addition, measurements were taken for the overall lymphocyte count, as well as the CD3+, CD4+, CD8+, CD4+, CD25+, and CD8+ CD25+ cell counts in all mice.</p><p><strong>Results: </strong>The diabetic mice that received vitamin D treatment exhibited significant reductions in blood glucose levels, HbA1c levels, lipid profile, cardiac enzymes, troponin I, endothelin-1, and VEGF levels as compared to the untreated diabetic group (p < 0.01). Furthermore, there was an observed rise in adropin and NO levels in diabetic mice that received vitamin D treatment compared to the untreated diabetic group (p < 0.05). The diabetic mice treated with vitamin D exhibited a substantial decrease in total lymphocyte counts compared to the untreated diabetic and control animals (p < 0.0001). Regarding the CD3+ subset, it was shown that diabetic mice subjected to vitamin D treatment had notably elevated levels of these cells compared to both the untreated diabetic and control groups (p < 0.0001). In addition, the administration of vitamin D resulted in a substantial decrease in the numbers of CD4+ and CD8+ cells in the group of individuals with diabetes (p < 0.0001). The diabetes group that received vitamin D treatment had significantly reduced populations of CD4+ CD25+ and CD8+ CD25+ compared to the untreated diabetic group (p < 0.0001).</p><p><strong>Conclusion: </strong>Vitamin D maintains the integrity of the cardiovascular system through the reduction of blood glucose levels and lipid profile. Moreover, its supplementation prevents atherosclerotic CVD by suppressing inflammatory reactions.</p>","PeriodicalId":94316,"journal":{"name":"Endocrine, metabolic & immune disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effect of Vitamin D Supplementation Against Atherosclerotic Cardiovascular Disease in Type 1 Diabetes Mellitus Model.\",\"authors\":\"Ayman Saeed Alhazmi\",\"doi\":\"10.2174/0118715303341809241022110317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.</p><p><strong>Methods: </strong>A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment. For each mouse in the three groups, measurements were taken of body weight, blood glucose levels, glycated hemoglobin (HbA1c), lipid profile, cardiac enzymes, troponin I, adropin, nitric oxide (NO), endothelin-1, and Vascular endothelial growth factor (VEGF). In addition, measurements were taken for the overall lymphocyte count, as well as the CD3+, CD4+, CD8+, CD4+, CD25+, and CD8+ CD25+ cell counts in all mice.</p><p><strong>Results: </strong>The diabetic mice that received vitamin D treatment exhibited significant reductions in blood glucose levels, HbA1c levels, lipid profile, cardiac enzymes, troponin I, endothelin-1, and VEGF levels as compared to the untreated diabetic group (p < 0.01). Furthermore, there was an observed rise in adropin and NO levels in diabetic mice that received vitamin D treatment compared to the untreated diabetic group (p < 0.05). The diabetic mice treated with vitamin D exhibited a substantial decrease in total lymphocyte counts compared to the untreated diabetic and control animals (p < 0.0001). Regarding the CD3+ subset, it was shown that diabetic mice subjected to vitamin D treatment had notably elevated levels of these cells compared to both the untreated diabetic and control groups (p < 0.0001). In addition, the administration of vitamin D resulted in a substantial decrease in the numbers of CD4+ and CD8+ cells in the group of individuals with diabetes (p < 0.0001). The diabetes group that received vitamin D treatment had significantly reduced populations of CD4+ CD25+ and CD8+ CD25+ compared to the untreated diabetic group (p < 0.0001).</p><p><strong>Conclusion: </strong>Vitamin D maintains the integrity of the cardiovascular system through the reduction of blood glucose levels and lipid profile. Moreover, its supplementation prevents atherosclerotic CVD by suppressing inflammatory reactions.</p>\",\"PeriodicalId\":94316,\"journal\":{\"name\":\"Endocrine, metabolic & immune disorders drug targets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine, metabolic & immune disorders drug targets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715303341809241022110317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine, metabolic & immune disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715303341809241022110317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protective Effect of Vitamin D Supplementation Against Atherosclerotic Cardiovascular Disease in Type 1 Diabetes Mellitus Model.
Introduction: Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.
Methods: A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment. For each mouse in the three groups, measurements were taken of body weight, blood glucose levels, glycated hemoglobin (HbA1c), lipid profile, cardiac enzymes, troponin I, adropin, nitric oxide (NO), endothelin-1, and Vascular endothelial growth factor (VEGF). In addition, measurements were taken for the overall lymphocyte count, as well as the CD3+, CD4+, CD8+, CD4+, CD25+, and CD8+ CD25+ cell counts in all mice.
Results: The diabetic mice that received vitamin D treatment exhibited significant reductions in blood glucose levels, HbA1c levels, lipid profile, cardiac enzymes, troponin I, endothelin-1, and VEGF levels as compared to the untreated diabetic group (p < 0.01). Furthermore, there was an observed rise in adropin and NO levels in diabetic mice that received vitamin D treatment compared to the untreated diabetic group (p < 0.05). The diabetic mice treated with vitamin D exhibited a substantial decrease in total lymphocyte counts compared to the untreated diabetic and control animals (p < 0.0001). Regarding the CD3+ subset, it was shown that diabetic mice subjected to vitamin D treatment had notably elevated levels of these cells compared to both the untreated diabetic and control groups (p < 0.0001). In addition, the administration of vitamin D resulted in a substantial decrease in the numbers of CD4+ and CD8+ cells in the group of individuals with diabetes (p < 0.0001). The diabetes group that received vitamin D treatment had significantly reduced populations of CD4+ CD25+ and CD8+ CD25+ compared to the untreated diabetic group (p < 0.0001).
Conclusion: Vitamin D maintains the integrity of the cardiovascular system through the reduction of blood glucose levels and lipid profile. Moreover, its supplementation prevents atherosclerotic CVD by suppressing inflammatory reactions.