Stepan D Osipov, Egor V Zinovev, Arina A Anuchina, Alexander S Kuzmin, Andronika V Minaeva, Yury L Ryzhykau, Alexey V Vlasov, Ivan Yu Gushchin
{"title":"f型ATP合成酶旋翼环化学计量学自然多样性的高通量评价。","authors":"Stepan D Osipov, Egor V Zinovev, Arina A Anuchina, Alexander S Kuzmin, Andronika V Minaeva, Yury L Ryzhykau, Alexey V Vlasov, Ivan Yu Gushchin","doi":"10.1002/prot.26790","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane. Currently, c-rings of F-Type ATP synthases consisting of 8-17 (except 16) subunits have been experimentally demonstrated, but it is not known whether other stoichiometries are present in natural organisms. Here, we present an easy-to-use high-throughput computational approach based on AlphaFold that allows us to estimate the stoichiometry of all homo-oligomeric c-rings, whose sequences are present in genomic databases. We validate the approach on the available experimental data, obtaining the correlation as high as 0.94 for the reference dataset and use it to predict the existence of c-rings with stoichiometry varying at least from 8 to 27. We then conduct molecular dynamics simulations of two c-rings with stoichiometry above 17 to corroborate the machine learning-based predictions. Our work strongly suggests existence of rotor rings with previously undescribed high stoichiometry in natural organisms and highlights the utility of AlphaFold-based approaches for studying homo-oligomeric proteins.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Evaluation of Natural Diversity of F-Type ATP Synthase Rotor Ring Stoichiometries.\",\"authors\":\"Stepan D Osipov, Egor V Zinovev, Arina A Anuchina, Alexander S Kuzmin, Andronika V Minaeva, Yury L Ryzhykau, Alexey V Vlasov, Ivan Yu Gushchin\",\"doi\":\"10.1002/prot.26790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane. Currently, c-rings of F-Type ATP synthases consisting of 8-17 (except 16) subunits have been experimentally demonstrated, but it is not known whether other stoichiometries are present in natural organisms. Here, we present an easy-to-use high-throughput computational approach based on AlphaFold that allows us to estimate the stoichiometry of all homo-oligomeric c-rings, whose sequences are present in genomic databases. We validate the approach on the available experimental data, obtaining the correlation as high as 0.94 for the reference dataset and use it to predict the existence of c-rings with stoichiometry varying at least from 8 to 27. We then conduct molecular dynamics simulations of two c-rings with stoichiometry above 17 to corroborate the machine learning-based predictions. Our work strongly suggests existence of rotor rings with previously undescribed high stoichiometry in natural organisms and highlights the utility of AlphaFold-based approaches for studying homo-oligomeric proteins.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26790\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26790","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High-Throughput Evaluation of Natural Diversity of F-Type ATP Synthase Rotor Ring Stoichiometries.
Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane. Currently, c-rings of F-Type ATP synthases consisting of 8-17 (except 16) subunits have been experimentally demonstrated, but it is not known whether other stoichiometries are present in natural organisms. Here, we present an easy-to-use high-throughput computational approach based on AlphaFold that allows us to estimate the stoichiometry of all homo-oligomeric c-rings, whose sequences are present in genomic databases. We validate the approach on the available experimental data, obtaining the correlation as high as 0.94 for the reference dataset and use it to predict the existence of c-rings with stoichiometry varying at least from 8 to 27. We then conduct molecular dynamics simulations of two c-rings with stoichiometry above 17 to corroborate the machine learning-based predictions. Our work strongly suggests existence of rotor rings with previously undescribed high stoichiometry in natural organisms and highlights the utility of AlphaFold-based approaches for studying homo-oligomeric proteins.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.