使用18FDG和64cu - dota -曲妥珠单抗正电子发射断层扫描研究验证临床动态磁共振成像灌注建模和乳腺癌新辅助化疗反应预测。

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-01-01 Epub Date: 2025-01-14 DOI:10.1200/CCI.23.00248
John Whitman, Vikram Adhikarla, Lusine Tumyan, Joanne Mortimer, Wei Huang, Russell Rockne, Joesph R Peterson, John Cole
{"title":"使用18FDG和64cu - dota -曲妥珠单抗正电子发射断层扫描研究验证临床动态磁共振成像灌注建模和乳腺癌新辅助化疗反应预测。","authors":"John Whitman, Vikram Adhikarla, Lusine Tumyan, Joanne Mortimer, Wei Huang, Russell Rockne, Joesph R Peterson, John Cole","doi":"10.1200/CCI.23.00248","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.</p><p><strong>Methods: </strong>Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency. The fits were also compared against previously published results from institutions using the full resolution series. The model was then evaluated on a separate cohort for validity of biomarker indications. Finally, the model was used as a fundamental part of predicting response to neoadjuvant chemotherapy (NACT).</p><p><strong>Results: </strong>Temporally subsampled DCE-MRI series yield perfusion fit variations on the scale of 1% of the tumor median value when input frames are varied. Fits generated from pseudoclinical series are within the variation range seen between imaging sites (ρ = 0.55), voxel-wise. The model also demonstrates significant correlations with orthogonal positron emission tomography imaging, indicating potential for use as a biomarker proxy. Specifically, using the perfusion fits as the grounding for a biophysical simulation of response, we correctly predict the pathologic complete response status after NACT in 15 of 18 patients, for an accuracy of 0.83, with a specificity and sensitivity of 0.83 as well.</p><p><strong>Conclusion: </strong>Clinical DCE-MRI data may be leveraged to provide stable perfusion fit results and indirectly interrogate the tumor microenvironment. These fits can then be used downstream for prediction of response to NACT with high accuracy.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2300248"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Clinical Dynamic Contrast-Enhanced Magnetic Resonance Imaging Perfusion Modeling and Neoadjuvant Chemotherapy Response Prediction in Breast Cancer Using <sup>18</sup>FDG and <sup>64</sup>Cu-DOTA-Trastuzumab Positron Emission Tomography Studies.\",\"authors\":\"John Whitman, Vikram Adhikarla, Lusine Tumyan, Joanne Mortimer, Wei Huang, Russell Rockne, Joesph R Peterson, John Cole\",\"doi\":\"10.1200/CCI.23.00248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.</p><p><strong>Methods: </strong>Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency. The fits were also compared against previously published results from institutions using the full resolution series. The model was then evaluated on a separate cohort for validity of biomarker indications. Finally, the model was used as a fundamental part of predicting response to neoadjuvant chemotherapy (NACT).</p><p><strong>Results: </strong>Temporally subsampled DCE-MRI series yield perfusion fit variations on the scale of 1% of the tumor median value when input frames are varied. Fits generated from pseudoclinical series are within the variation range seen between imaging sites (ρ = 0.55), voxel-wise. The model also demonstrates significant correlations with orthogonal positron emission tomography imaging, indicating potential for use as a biomarker proxy. Specifically, using the perfusion fits as the grounding for a biophysical simulation of response, we correctly predict the pathologic complete response status after NACT in 15 of 18 patients, for an accuracy of 0.83, with a specificity and sensitivity of 0.83 as well.</p><p><strong>Conclusion: </strong>Clinical DCE-MRI data may be leveraged to provide stable perfusion fit results and indirectly interrogate the tumor microenvironment. These fits can then be used downstream for prediction of response to NACT with high accuracy.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"9 \",\"pages\":\"e2300248\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.23.00248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:灌注建模为乳腺癌成像生物标记物的开发提供了重要机会,但由于需要临床治疗标准(SoC)以外的数据以及结果可解释性的不确定性,灌注建模一直受到阻碍。我们的目标是设计一种适用于乳腺癌SoC动态对比增强磁共振成像(DCE-MRI)系列的灌注模型,其结果稳定于低时间分辨率成像,可与已发表的使用全分辨率DCE-MRI的结果相媲美,并与指示生物物理标记的正交成像模式相关:方法:通过我们的灌注模型运行子样本高时间分辨率 DCE-MRI 序列,并比较拟合结果的一致性。还将拟合结果与使用全分辨率系列的机构之前公布的结果进行了比较。然后在一个单独的队列中对模型进行评估,以确定生物标记物适应症的有效性。最后,该模型被用作预测新辅助化疗(NACT)反应的基础部分:结果:当输入帧发生变化时,时间子取样的 DCE-MRI 序列产生的灌注拟合变化幅度为肿瘤中值的 1%。由假临床序列生成的拟合结果在不同成像部位(ρ = 0.55)之间的体素变化范围内。该模型还显示出与正交正电子发射断层成像的显著相关性,这表明该模型具有作为生物标记物替代物的潜力。具体来说,利用灌注拟合作为反应生物物理模拟的基础,我们正确预测了 18 例患者中 15 例的 NACT 后病理完全反应状态,准确率为 0.83,特异性和灵敏度也达到了 0.83:结论:临床 DCE-MRI 数据可用于提供稳定的灌注拟合结果,并间接了解肿瘤微环境。结论:临床 DCE-MRI 数据可用于提供稳定的灌注拟合结果,并间接询问肿瘤微环境,然后将这些拟合结果用于下游,以高精度预测对 NACT 的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of Clinical Dynamic Contrast-Enhanced Magnetic Resonance Imaging Perfusion Modeling and Neoadjuvant Chemotherapy Response Prediction in Breast Cancer Using 18FDG and 64Cu-DOTA-Trastuzumab Positron Emission Tomography Studies.

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency. The fits were also compared against previously published results from institutions using the full resolution series. The model was then evaluated on a separate cohort for validity of biomarker indications. Finally, the model was used as a fundamental part of predicting response to neoadjuvant chemotherapy (NACT).

Results: Temporally subsampled DCE-MRI series yield perfusion fit variations on the scale of 1% of the tumor median value when input frames are varied. Fits generated from pseudoclinical series are within the variation range seen between imaging sites (ρ = 0.55), voxel-wise. The model also demonstrates significant correlations with orthogonal positron emission tomography imaging, indicating potential for use as a biomarker proxy. Specifically, using the perfusion fits as the grounding for a biophysical simulation of response, we correctly predict the pathologic complete response status after NACT in 15 of 18 patients, for an accuracy of 0.83, with a specificity and sensitivity of 0.83 as well.

Conclusion: Clinical DCE-MRI data may be leveraged to provide stable perfusion fit results and indirectly interrogate the tumor microenvironment. These fits can then be used downstream for prediction of response to NACT with high accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信