海洋双壳类动物Chlamys nobilis精子发生相关的标志性基因EVM713的功能验证。

Xixi Duan, Mingfei Feng, Xiangdong Bai, Imran Rashid Rajput, Hongkuan Zhang, Huaiping Zheng
{"title":"海洋双壳类动物Chlamys nobilis精子发生相关的标志性基因EVM713的功能验证。","authors":"Xixi Duan, Mingfei Feng, Xiangdong Bai, Imran Rashid Rajput, Hongkuan Zhang, Huaiping Zheng","doi":"10.1016/j.cbd.2024.101412","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of broodstock gametes is closely linked to the yield and quality in aquaculture production, yet molecular mechanisms underlying this process remain insufficiently understood. The noble scallop Chlamys nobilis, an economically significant dioecious bivalve species, serves as an excellent model for studying gametogenesis. In this study, the adult scallops with testis at different developmental stage were chosen for histological examination and transcriptome analysis to dig genes related gonad development. Totally, 2663 DEGs and their set modules significantly related to spermatogenesis were obtained using WGCNA, including 40 candidate genes represented by EVM713. The gene was specifically expressed in the testis. RNA interference (RNAi) of EVM713 led to impaired testis development, marked by sparse sperm cell arrangement, spermatocytes detaching from the follicle wall, and reduced spermatocyte numbers. Meanwhile, 24 h after RNAi, the expression levels of Bax, and Caspase3 significantly increased (P < 0.05), while those of Bcl2, Dmrt2 and Tssk4 were significantly decreased (P < 0.05). These results indicate that EVM713 is essential for spermatogenesis in bivalves, regulating testis development through the modulation of Dmrt2 and Tssk4 expression. This study provides the first evidence of EVM713 function in mollusks, which is conducive to better understanding molecular mechanisms underlying gametogenesis in marine invertebrates.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101412"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional verification of a landmark gene EVM713 involved in spermatogenesis in the marine bivalve Chlamys nobilis.\",\"authors\":\"Xixi Duan, Mingfei Feng, Xiangdong Bai, Imran Rashid Rajput, Hongkuan Zhang, Huaiping Zheng\",\"doi\":\"10.1016/j.cbd.2024.101412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The formation of broodstock gametes is closely linked to the yield and quality in aquaculture production, yet molecular mechanisms underlying this process remain insufficiently understood. The noble scallop Chlamys nobilis, an economically significant dioecious bivalve species, serves as an excellent model for studying gametogenesis. In this study, the adult scallops with testis at different developmental stage were chosen for histological examination and transcriptome analysis to dig genes related gonad development. Totally, 2663 DEGs and their set modules significantly related to spermatogenesis were obtained using WGCNA, including 40 candidate genes represented by EVM713. The gene was specifically expressed in the testis. RNA interference (RNAi) of EVM713 led to impaired testis development, marked by sparse sperm cell arrangement, spermatocytes detaching from the follicle wall, and reduced spermatocyte numbers. Meanwhile, 24 h after RNAi, the expression levels of Bax, and Caspase3 significantly increased (P < 0.05), while those of Bcl2, Dmrt2 and Tssk4 were significantly decreased (P < 0.05). These results indicate that EVM713 is essential for spermatogenesis in bivalves, regulating testis development through the modulation of Dmrt2 and Tssk4 expression. This study provides the first evidence of EVM713 function in mollusks, which is conducive to better understanding molecular mechanisms underlying gametogenesis in marine invertebrates.</p>\",\"PeriodicalId\":93949,\"journal\":{\"name\":\"Comparative biochemistry and physiology. Part D, Genomics & proteomics\",\"volume\":\"54 \",\"pages\":\"101412\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative biochemistry and physiology. Part D, Genomics & proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cbd.2024.101412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亲鱼配子的形成与水产养殖产量和质量密切相关,但这一过程背后的分子机制尚不清楚。贵族扇贝(Chlamys nobilis)是一种具有重要经济意义的雌雄异株双壳类物种,是研究配子体发生的良好模型。本研究选取不同发育阶段睾丸的成体扇贝进行组织学检查和转录组分析,挖掘与性腺发育相关的基因。利用WGCNA共获得2663个与精子发生显著相关的deg及其集合模块,其中以EVM713为代表的候选基因有40个。该基因在睾丸中特异性表达。EVM713的RNA干扰(RNAi)导致睾丸发育受损,表现为精子细胞排列稀疏,精母细胞脱离卵泡壁,精母细胞数量减少。同时,RNAi后24 h, Bax、Caspase3的表达水平显著升高(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional verification of a landmark gene EVM713 involved in spermatogenesis in the marine bivalve Chlamys nobilis.

The formation of broodstock gametes is closely linked to the yield and quality in aquaculture production, yet molecular mechanisms underlying this process remain insufficiently understood. The noble scallop Chlamys nobilis, an economically significant dioecious bivalve species, serves as an excellent model for studying gametogenesis. In this study, the adult scallops with testis at different developmental stage were chosen for histological examination and transcriptome analysis to dig genes related gonad development. Totally, 2663 DEGs and their set modules significantly related to spermatogenesis were obtained using WGCNA, including 40 candidate genes represented by EVM713. The gene was specifically expressed in the testis. RNA interference (RNAi) of EVM713 led to impaired testis development, marked by sparse sperm cell arrangement, spermatocytes detaching from the follicle wall, and reduced spermatocyte numbers. Meanwhile, 24 h after RNAi, the expression levels of Bax, and Caspase3 significantly increased (P < 0.05), while those of Bcl2, Dmrt2 and Tssk4 were significantly decreased (P < 0.05). These results indicate that EVM713 is essential for spermatogenesis in bivalves, regulating testis development through the modulation of Dmrt2 and Tssk4 expression. This study provides the first evidence of EVM713 function in mollusks, which is conducive to better understanding molecular mechanisms underlying gametogenesis in marine invertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信