卫星细胞特异性时钟基因Bmal1的消融改变了收缩性损伤后的力量产生、肌肉损伤和修复。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ryan E. Kahn, Pei Zhu, Ishan Roy, Clara Peek, John A. Hawley, Sudarshan Dayanidhi
{"title":"卫星细胞特异性时钟基因Bmal1的消融改变了收缩性损伤后的力量产生、肌肉损伤和修复。","authors":"Ryan E. Kahn,&nbsp;Pei Zhu,&nbsp;Ishan Roy,&nbsp;Clara Peek,&nbsp;John A. Hawley,&nbsp;Sudarshan Dayanidhi","doi":"10.1096/fj.202402145RR","DOIUrl":null,"url":null,"abstract":"<p>Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, <i>Bmal1,</i> is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of <i>Bmal1</i> within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-<i>Bmal1</i><sup>iKO</sup> animals exhibited a ~20–25% reduction in normalized force production (ex vivo and in vivo) versus control SC-<i>Bmal1</i><sup>Cntrl</sup> and SC-<i>Bmal1</i><sup>iKO</sup> untreated littermates (<i>p</i> &lt; .05). Following contractile injury, SC-<i>Bmal1</i><sup>iKO</sup> animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophin<sup>negative</sup> fibers 24 h: SC-<i>Bmal1</i><sup>Cntrl</sup> 199 ± 41; SC-<i>Bmal1</i><sup>iKO</sup> 36 ± 13, <i>p</i> &lt; .05) (eMHC<sup>+</sup> fibers 7 day: SC-<i>Bmal1</i><sup>Cntrl</sup> 217.8 ± 115.5; SC-<i>Bmal1</i><sup>iKO</sup> 27.8 ± 17.3; Centralized nuclei 7 day: SC-<i>Bmal1</i><sup>Cntrl</sup> 160.7 ± 70.5; SC-<i>Bmal1</i><sup>iKO</sup> 46.2 ± 15.7). SC-<i>Bmal1</i><sup>iKO</sup> animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-<i>Bmal1</i><sup>Cntrl</sup> 2.4 ± 0.4; SC-<i>Bmal1</i><sup>iKO</sup> 0.4 ± 0.2, % area fraction, <i>p</i> &lt; .05). SC-<i>Bmal1</i><sup>iKO</sup> animals had greater SC activation/proliferation at an earlier timepoint (<i>p</i> &lt; .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-<i>Bmal1</i> plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury\",\"authors\":\"Ryan E. Kahn,&nbsp;Pei Zhu,&nbsp;Ishan Roy,&nbsp;Clara Peek,&nbsp;John A. Hawley,&nbsp;Sudarshan Dayanidhi\",\"doi\":\"10.1096/fj.202402145RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, <i>Bmal1,</i> is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of <i>Bmal1</i> within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-<i>Bmal1</i><sup>iKO</sup> animals exhibited a ~20–25% reduction in normalized force production (ex vivo and in vivo) versus control SC-<i>Bmal1</i><sup>Cntrl</sup> and SC-<i>Bmal1</i><sup>iKO</sup> untreated littermates (<i>p</i> &lt; .05). Following contractile injury, SC-<i>Bmal1</i><sup>iKO</sup> animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophin<sup>negative</sup> fibers 24 h: SC-<i>Bmal1</i><sup>Cntrl</sup> 199 ± 41; SC-<i>Bmal1</i><sup>iKO</sup> 36 ± 13, <i>p</i> &lt; .05) (eMHC<sup>+</sup> fibers 7 day: SC-<i>Bmal1</i><sup>Cntrl</sup> 217.8 ± 115.5; SC-<i>Bmal1</i><sup>iKO</sup> 27.8 ± 17.3; Centralized nuclei 7 day: SC-<i>Bmal1</i><sup>Cntrl</sup> 160.7 ± 70.5; SC-<i>Bmal1</i><sup>iKO</sup> 46.2 ± 15.7). SC-<i>Bmal1</i><sup>iKO</sup> animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-<i>Bmal1</i><sup>Cntrl</sup> 2.4 ± 0.4; SC-<i>Bmal1</i><sup>iKO</sup> 0.4 ± 0.2, % area fraction, <i>p</i> &lt; .05). SC-<i>Bmal1</i><sup>iKO</sup> animals had greater SC activation/proliferation at an earlier timepoint (<i>p</i> &lt; .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-<i>Bmal1</i> plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402145RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402145RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

损伤后,骨骼肌通过卫星细胞(SC)介导的成肌进展进行修复。在SCs中,昼夜节律分子钟基因Bmal1对于适当的肌肉生成进展和修复是必要的,有证据表明肌肉分子钟也可以影响力量的产生。利用小鼠模型,允许诱导SC中Bmal1的消耗,我们确定了SC的收缩功能、成肌进展以及偏心收缩性损伤后的肌肉损伤和修复。在基线时,SC-Bmal1iKO动物与对照组sc - bmal1control和SC-Bmal1iKO未治疗的窝鼠相比,标准化力产生(体内和体外)减少了~20-25% (p)。SC-Bmal1iKO 36±13,p +纤维7天:sc - bmal1control 217.8±115.5;SC-Bmal1iKO 27.8±17.3;中心化核7天:sc - bmal1 control 160.7±70.5;SC-Bmal1iKO(46.2±15.7)。SC-Bmal1iKO动物也表现出中性粒细胞浸润减少,与较轻的损伤一致(中性粒细胞含量24 h: sc - bmal1control 2.4±0.4;SC- bmal1iko 0.4±0.2,%面积分数,p iKO动物在更早的时间点有更大的SC激活/增殖(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury

Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-Bmal1iKO animals exhibited a ~20–25% reduction in normalized force production (ex vivo and in vivo) versus control SC-Bmal1Cntrl and SC-Bmal1iKO untreated littermates (p < .05). Following contractile injury, SC-Bmal1iKO animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophinnegative fibers 24 h: SC-Bmal1Cntrl 199 ± 41; SC-Bmal1iKO 36 ± 13, p < .05) (eMHC+ fibers 7 day: SC-Bmal1Cntrl 217.8 ± 115.5; SC-Bmal1iKO 27.8 ± 17.3; Centralized nuclei 7 day: SC-Bmal1Cntrl 160.7 ± 70.5; SC-Bmal1iKO 46.2 ± 15.7). SC-Bmal1iKO animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-Bmal1Cntrl 2.4 ± 0.4; SC-Bmal1iKO 0.4 ± 0.2, % area fraction, p < .05). SC-Bmal1iKO animals had greater SC activation/proliferation at an earlier timepoint (p < .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-Bmal1 plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信