Eric A Bai, Botao Ju, Madeleine Beckner, Jerome P Reiter, M Giovanna Merli, Ted Mouw
{"title":"结合调查数据和商业数据,研究罗利-达勒姆地区华人移民的空间分布。","authors":"Eric A Bai, Botao Ju, Madeleine Beckner, Jerome P Reiter, M Giovanna Merli, Ted Mouw","doi":"10.1093/jrsssa/qnae107","DOIUrl":null,"url":null,"abstract":"<p><p>Many population surveys do not provide information on respondents' residential addresses, instead offering coarse geographies like zip code or higher aggregations. However, fine resolution geography can be beneficial for characterizing neighbourhoods, especially for relatively rare populations such as immigrants. One way to obtain such information is to link survey records to records in auxiliary databases that include residential addresses by matching on variables common to both files. We present an approach based on probabilistic record linkage that enables matching survey participants in the Chinese Immigrants in Raleigh-Durham Study to records from InfoUSA, an information provider of residential records. The two files use different Chinese name romanization practices, which we address through a novel and generalizable strategy for constructing records' pairwise comparison vectors for romanized names. Using a fully Bayesian record linkage model, we characterize the geospatial distribution of Chinese immigrants in the Raleigh-Durham area of North Carolina.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":"188 1","pages":"84-97"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728054/pdf/","citationCount":"0","resultStr":"{\"title\":\"Studying Chinese immigrants' spatial distribution in the Raleigh-Durham area by linking survey and commercial data using romanized names.\",\"authors\":\"Eric A Bai, Botao Ju, Madeleine Beckner, Jerome P Reiter, M Giovanna Merli, Ted Mouw\",\"doi\":\"10.1093/jrsssa/qnae107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many population surveys do not provide information on respondents' residential addresses, instead offering coarse geographies like zip code or higher aggregations. However, fine resolution geography can be beneficial for characterizing neighbourhoods, especially for relatively rare populations such as immigrants. One way to obtain such information is to link survey records to records in auxiliary databases that include residential addresses by matching on variables common to both files. We present an approach based on probabilistic record linkage that enables matching survey participants in the Chinese Immigrants in Raleigh-Durham Study to records from InfoUSA, an information provider of residential records. The two files use different Chinese name romanization practices, which we address through a novel and generalizable strategy for constructing records' pairwise comparison vectors for romanized names. Using a fully Bayesian record linkage model, we characterize the geospatial distribution of Chinese immigrants in the Raleigh-Durham area of North Carolina.</p>\",\"PeriodicalId\":49983,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"volume\":\"188 1\",\"pages\":\"84-97\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnae107\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Studying Chinese immigrants' spatial distribution in the Raleigh-Durham area by linking survey and commercial data using romanized names.
Many population surveys do not provide information on respondents' residential addresses, instead offering coarse geographies like zip code or higher aggregations. However, fine resolution geography can be beneficial for characterizing neighbourhoods, especially for relatively rare populations such as immigrants. One way to obtain such information is to link survey records to records in auxiliary databases that include residential addresses by matching on variables common to both files. We present an approach based on probabilistic record linkage that enables matching survey participants in the Chinese Immigrants in Raleigh-Durham Study to records from InfoUSA, an information provider of residential records. The two files use different Chinese name romanization practices, which we address through a novel and generalizable strategy for constructing records' pairwise comparison vectors for romanized names. Using a fully Bayesian record linkage model, we characterize the geospatial distribution of Chinese immigrants in the Raleigh-Durham area of North Carolina.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.