Timothy J. Eisen, Sam Ghaffari-Kashani, Chien-Lun Hung, Jay T. Groves, Arthur Weiss, John Kuriyan
{"title":"淋巴细胞系BTK信号膜结合模块二聚化的条件要求。","authors":"Timothy J. Eisen, Sam Ghaffari-Kashani, Chien-Lun Hung, Jay T. Groves, Arthur Weiss, John Kuriyan","doi":"10.1126/scisignal.ado1252","DOIUrl":null,"url":null,"abstract":"<div >Bruton’s tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 869","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional requirement for dimerization of the membrane-binding module for BTK signaling in lymphocyte cell lines\",\"authors\":\"Timothy J. Eisen, Sam Ghaffari-Kashani, Chien-Lun Hung, Jay T. Groves, Arthur Weiss, John Kuriyan\",\"doi\":\"10.1126/scisignal.ado1252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Bruton’s tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.</div>\",\"PeriodicalId\":21658,\"journal\":{\"name\":\"Science Signaling\",\"volume\":\"18 869\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scisignal.ado1252\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.ado1252","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Conditional requirement for dimerization of the membrane-binding module for BTK signaling in lymphocyte cell lines
Bruton’s tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.