Niu-Niu Zhao, Xue-Lian Gu, Zhen-Zhen Dai, Chen-Chen Wu, Tian-Yi Zhang, Hai Li
{"title":"儿童股骨颈骨折的三维CT成像形态学特征分析研究。","authors":"Niu-Niu Zhao, Xue-Lian Gu, Zhen-Zhen Dai, Chen-Chen Wu, Tian-Yi Zhang, Hai Li","doi":"10.1007/s11517-024-03260-3","DOIUrl":null,"url":null,"abstract":"<p><p>Proximal femoral fractures in children are challenging in clinical treatment due to their unique anatomical and biomechanical characteristics. The distribution and characteristics of fracture lines directly affect the selection of treatment options and prognosis. Pediatric proximal femur fractures exhibit distinctive features, with the distribution and characteristics of the fracture line playing a crucial role in deciding optimal treatment. The study aims to investigate the morphological characteristics of pediatric femoral neck fracture (FNF) from clinical cases by fracture mapping technology and to analyze the relationship between fracture classifications and age. The CT data were collected from 46 consecutive pediatric inpatients' diagnoses of FNF from March 2009 to December 2022. The fracture imaging was reconstructed in three dimensions and performed the simulated anatomical reduction by Mimics and 3-matic. Both Delbet classification and Pauwels angle classification were documented according to the fracture line in each patient. Furthermore, all of the fracture lines in these patients were superimposed to form a fracture map and a heat map. This study included 24 boys and 22 girls (average age, 9.61 ± 3.17 years (4 to 16 years)). The fracture lines of the anterior and superior femoral neck were found to be mainly located in the middle and lower regions of the femoral neck, while fracture lines of the posterior and inferior neck were mainly concentrated in the middle region. Most children younger than 10 years had Delbet type III of fracture (69%), whereas those older than 10 years had Delbet type II of fracture (73%). Furthermore, most children had Pauwels angle type III of fracture (63%), especially in those over 10 years old (80%) (p = 0.0001). FNF in children is predominantly located in the middle and lower regions of the neck. Older children may be prone to be affected with higher fracture location of FNF or unstable type of fracture.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the analysis of morphological characteristics in pediatric femoral neck fractures utilizing 3D CT mapping.\",\"authors\":\"Niu-Niu Zhao, Xue-Lian Gu, Zhen-Zhen Dai, Chen-Chen Wu, Tian-Yi Zhang, Hai Li\",\"doi\":\"10.1007/s11517-024-03260-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proximal femoral fractures in children are challenging in clinical treatment due to their unique anatomical and biomechanical characteristics. The distribution and characteristics of fracture lines directly affect the selection of treatment options and prognosis. Pediatric proximal femur fractures exhibit distinctive features, with the distribution and characteristics of the fracture line playing a crucial role in deciding optimal treatment. The study aims to investigate the morphological characteristics of pediatric femoral neck fracture (FNF) from clinical cases by fracture mapping technology and to analyze the relationship between fracture classifications and age. The CT data were collected from 46 consecutive pediatric inpatients' diagnoses of FNF from March 2009 to December 2022. The fracture imaging was reconstructed in three dimensions and performed the simulated anatomical reduction by Mimics and 3-matic. Both Delbet classification and Pauwels angle classification were documented according to the fracture line in each patient. Furthermore, all of the fracture lines in these patients were superimposed to form a fracture map and a heat map. This study included 24 boys and 22 girls (average age, 9.61 ± 3.17 years (4 to 16 years)). The fracture lines of the anterior and superior femoral neck were found to be mainly located in the middle and lower regions of the femoral neck, while fracture lines of the posterior and inferior neck were mainly concentrated in the middle region. Most children younger than 10 years had Delbet type III of fracture (69%), whereas those older than 10 years had Delbet type II of fracture (73%). Furthermore, most children had Pauwels angle type III of fracture (63%), especially in those over 10 years old (80%) (p = 0.0001). FNF in children is predominantly located in the middle and lower regions of the neck. Older children may be prone to be affected with higher fracture location of FNF or unstable type of fracture.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03260-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03260-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Research on the analysis of morphological characteristics in pediatric femoral neck fractures utilizing 3D CT mapping.
Proximal femoral fractures in children are challenging in clinical treatment due to their unique anatomical and biomechanical characteristics. The distribution and characteristics of fracture lines directly affect the selection of treatment options and prognosis. Pediatric proximal femur fractures exhibit distinctive features, with the distribution and characteristics of the fracture line playing a crucial role in deciding optimal treatment. The study aims to investigate the morphological characteristics of pediatric femoral neck fracture (FNF) from clinical cases by fracture mapping technology and to analyze the relationship between fracture classifications and age. The CT data were collected from 46 consecutive pediatric inpatients' diagnoses of FNF from March 2009 to December 2022. The fracture imaging was reconstructed in three dimensions and performed the simulated anatomical reduction by Mimics and 3-matic. Both Delbet classification and Pauwels angle classification were documented according to the fracture line in each patient. Furthermore, all of the fracture lines in these patients were superimposed to form a fracture map and a heat map. This study included 24 boys and 22 girls (average age, 9.61 ± 3.17 years (4 to 16 years)). The fracture lines of the anterior and superior femoral neck were found to be mainly located in the middle and lower regions of the femoral neck, while fracture lines of the posterior and inferior neck were mainly concentrated in the middle region. Most children younger than 10 years had Delbet type III of fracture (69%), whereas those older than 10 years had Delbet type II of fracture (73%). Furthermore, most children had Pauwels angle type III of fracture (63%), especially in those over 10 years old (80%) (p = 0.0001). FNF in children is predominantly located in the middle and lower regions of the neck. Older children may be prone to be affected with higher fracture location of FNF or unstable type of fracture.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).