IF 6.8 1区 医学 Q1 ONCOLOGY
Ziyang Wang, Xiaoqiu Yuan, Kunkun Sun, Fang Wu, Ke Liu, Yiruo Jin, Olga Chervova, Yuntao Nie, Airong Yang, Yichen Jin, Jing Li, Yun Li, Fan Yang, Jun Wang, Stephan Beck, David Carbone, Guanchao Jiang, Kezhong Chen
{"title":"Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution.","authors":"Ziyang Wang, Xiaoqiu Yuan, Kunkun Sun, Fang Wu, Ke Liu, Yiruo Jin, Olga Chervova, Yuntao Nie, Airong Yang, Yichen Jin, Jing Li, Yun Li, Fan Yang, Jun Wang, Stephan Beck, David Carbone, Guanchao Jiang, Kezhong Chen","doi":"10.1038/s41698-024-00786-5","DOIUrl":null,"url":null,"abstract":"<p><p>Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated. ROC analysis highlighted MoleB's superior performance, especially with the NCCNplus panel (AUC = 0.950 ± 0.002) and pancancer MoleA (AUC = 0.792 ± 0.004). In two independent cohorts (WES cohort, N = 42 and non-WES cohort, N = 94), NGS-based methodologies effectively stratified disease-free survival, with NCCNplus MoleB further predicting prognosis. Phylogenetic analysis further revealed evolutionary distinctions between MPLC and IPM, establishing an optimized NGS-based framework for differentiating multiple lung cancers.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"14"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00786-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

下一代测序(NGS)为区分多发性原发性肺癌(MPLC)和肺内转移癌(IPM)提供了一种前景广阔的方法,但面板选择和克隆解读仍具有挑战性。研究人员利用来自 80 个肺癌样本的全外显子组测序(WES)数据模拟 MPLC 和 IPM,并通过基因子取样构建了不同的测序面板。随后对主要应用于临床实践的两种克隆解读方法--MoleA(基于共享突变比较)和MoleB(基于概率计算)进行了评估。ROC 分析凸显了 MoleB 的优越性能,尤其是与 NCCNplus 面板(AUC = 0.950 ± 0.002)和胰腺癌 MoleA(AUC = 0.792 ± 0.004)相比。在两个独立队列(WES 队列,42 人;非 WES 队列,94 人)中,基于 NGS 的方法有效地对无病生存率进行了分层,NCCNplus MoleB 进一步预测了预后。系统发育分析进一步揭示了 MPLC 和 IPM 之间的进化差异,为区分多种肺癌建立了基于 NGS 的优化框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution.

Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated. ROC analysis highlighted MoleB's superior performance, especially with the NCCNplus panel (AUC = 0.950 ± 0.002) and pancancer MoleA (AUC = 0.792 ± 0.004). In two independent cohorts (WES cohort, N = 42 and non-WES cohort, N = 94), NGS-based methodologies effectively stratified disease-free survival, with NCCNplus MoleB further predicting prognosis. Phylogenetic analysis further revealed evolutionary distinctions between MPLC and IPM, establishing an optimized NGS-based framework for differentiating multiple lung cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信