Joe Gilbody, Maria Carolina Borges, George Davey Smith, Eleanor Sanderson
{"title":"使用协变量调整的汇总关联,多变量MR可以减轻双样本MR的偏差。","authors":"Joe Gilbody, Maria Carolina Borges, George Davey Smith, Eleanor Sanderson","doi":"10.1002/gepi.22606","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) are hypothesis-free studies that estimate the association between polymorphisms across the genome with a trait of interest. To increase power and to estimate the direct effects of these single-nucleotide polymorphisms (SNPs) on a trait GWAS are often conditioned on a covariate (such as body mass index or smoking status). This adjustment can introduce bias in the estimated effect of the SNP on the trait. Two-sample Mendelian randomisation (MR) studies use summary statistics from GWAS estimate the causal effect of a risk factor (or exposure) on an outcome. Covariate adjustment in GWAS can bias the effect estimates obtained from MR studies conducted using covariate adjusted GWAS data. Multivariable MR (MVMR) is an extension of MR that includes multiple traits as exposures. Here we propose the use of MVMR to correct the bias in MR studies from covariate adjustment. We show how MVMR can recover unbiased estimates of the direct effect of the exposure of interest by including the covariate used to adjust the GWAS within the analysis. We apply this method to estimate the effect of systolic blood pressure on type-2 diabetes and the effect of waist circumference on systolic blood pressure. Our analytical and simulation results show that MVMR provides unbiased effect estimates for the exposure when either the exposure or outcome of interest has been adjusted for a covariate. Our results also highlight the parameters that determine when MR will be biased by GWAS covariate adjustment. The results from the applied analysis mirror these results, with equivalent results seen in the MVMR with and without adjusted GWAS. When GWAS results have been adjusted for a covariate, biasing MR effect estimates, direct effect estimates of an exposure on an outcome can be obtained by including that covariate as an additional exposure in an MVMR estimation. However, the estimated effect of the covariate obtained from the MVMR estimation is biased.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multivariable MR Can Mitigate Bias in Two-Sample MR Using Covariable-Adjusted Summary Associations\",\"authors\":\"Joe Gilbody, Maria Carolina Borges, George Davey Smith, Eleanor Sanderson\",\"doi\":\"10.1002/gepi.22606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genome-wide association studies (GWAS) are hypothesis-free studies that estimate the association between polymorphisms across the genome with a trait of interest. To increase power and to estimate the direct effects of these single-nucleotide polymorphisms (SNPs) on a trait GWAS are often conditioned on a covariate (such as body mass index or smoking status). This adjustment can introduce bias in the estimated effect of the SNP on the trait. Two-sample Mendelian randomisation (MR) studies use summary statistics from GWAS estimate the causal effect of a risk factor (or exposure) on an outcome. Covariate adjustment in GWAS can bias the effect estimates obtained from MR studies conducted using covariate adjusted GWAS data. Multivariable MR (MVMR) is an extension of MR that includes multiple traits as exposures. Here we propose the use of MVMR to correct the bias in MR studies from covariate adjustment. We show how MVMR can recover unbiased estimates of the direct effect of the exposure of interest by including the covariate used to adjust the GWAS within the analysis. We apply this method to estimate the effect of systolic blood pressure on type-2 diabetes and the effect of waist circumference on systolic blood pressure. Our analytical and simulation results show that MVMR provides unbiased effect estimates for the exposure when either the exposure or outcome of interest has been adjusted for a covariate. Our results also highlight the parameters that determine when MR will be biased by GWAS covariate adjustment. The results from the applied analysis mirror these results, with equivalent results seen in the MVMR with and without adjusted GWAS. When GWAS results have been adjusted for a covariate, biasing MR effect estimates, direct effect estimates of an exposure on an outcome can be obtained by including that covariate as an additional exposure in an MVMR estimation. However, the estimated effect of the covariate obtained from the MVMR estimation is biased.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22606\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22606","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Multivariable MR Can Mitigate Bias in Two-Sample MR Using Covariable-Adjusted Summary Associations
Genome-wide association studies (GWAS) are hypothesis-free studies that estimate the association between polymorphisms across the genome with a trait of interest. To increase power and to estimate the direct effects of these single-nucleotide polymorphisms (SNPs) on a trait GWAS are often conditioned on a covariate (such as body mass index or smoking status). This adjustment can introduce bias in the estimated effect of the SNP on the trait. Two-sample Mendelian randomisation (MR) studies use summary statistics from GWAS estimate the causal effect of a risk factor (or exposure) on an outcome. Covariate adjustment in GWAS can bias the effect estimates obtained from MR studies conducted using covariate adjusted GWAS data. Multivariable MR (MVMR) is an extension of MR that includes multiple traits as exposures. Here we propose the use of MVMR to correct the bias in MR studies from covariate adjustment. We show how MVMR can recover unbiased estimates of the direct effect of the exposure of interest by including the covariate used to adjust the GWAS within the analysis. We apply this method to estimate the effect of systolic blood pressure on type-2 diabetes and the effect of waist circumference on systolic blood pressure. Our analytical and simulation results show that MVMR provides unbiased effect estimates for the exposure when either the exposure or outcome of interest has been adjusted for a covariate. Our results also highlight the parameters that determine when MR will be biased by GWAS covariate adjustment. The results from the applied analysis mirror these results, with equivalent results seen in the MVMR with and without adjusted GWAS. When GWAS results have been adjusted for a covariate, biasing MR effect estimates, direct effect estimates of an exposure on an outcome can be obtained by including that covariate as an additional exposure in an MVMR estimation. However, the estimated effect of the covariate obtained from the MVMR estimation is biased.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.