多组学整合和相关个体全基因组关联检测的通用核机方法。

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Amarise Little, Ni Zhao, Anna Mikhaylova, Angela Zhang, Wodan Ling, Florian Thibord, Andrew D Johnson, Laura M Raffield, Joanne E Curran, John Blangero, Jeffrey R O'Connell, Huichun Xu, Jerome I Rotter, Stephen S Rich, Kenneth M Rice, Ming-Huei Chen, Alexander Reiner, Charles Kooperberg, Thao Vu, Lifang Hou, Myriam Fornage, Ruth J F Loos, Eimear Kenny, Rasika Mathias, Lewis Becker, Albert V Smith, Eric Boerwinkle, Bing Yu, Timothy Thornton, Michael C Wu
{"title":"多组学整合和相关个体全基因组关联检测的通用核机方法。","authors":"Amarise Little, Ni Zhao, Anna Mikhaylova, Angela Zhang, Wodan Ling, Florian Thibord, Andrew D Johnson, Laura M Raffield, Joanne E Curran, John Blangero, Jeffrey R O'Connell, Huichun Xu, Jerome I Rotter, Stephen S Rich, Kenneth M Rice, Ming-Huei Chen, Alexander Reiner, Charles Kooperberg, Thao Vu, Lifang Hou, Myriam Fornage, Ruth J F Loos, Eimear Kenny, Rasika Mathias, Lewis Becker, Albert V Smith, Eric Boerwinkle, Bing Yu, Timothy Thornton, Michael C Wu","doi":"10.1002/gepi.22610","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.g. genotypes and gene expression levels) on a phenotype, particularly while accommodating routine issues, such as having related subjects' data in analyses. In this paper, we extend an existing composite kernel machine regression model to integrate two multi-omics data types, while accommodating for general correlation structures amongst outcomes. Due to the kernel machine regression framework, our methods allow for the integration of high-dimensional omics data with small, nonlinear, and interactive effects, and accommodation of general study designs. Here, we focus on scientific questions that aim to assess the association between a functional grouping (such as a gene or a pathway) and a quantitative trait of interest. We use a kernel machine regression to integrate the two multi-omics data types, as they may relate to the trait, and perform a global test of association. We demonstrate the advantage of this approach over single data type association tests via simulation. Finally, we apply this method to a large, multi-ethnic data set to investigate how predicted gene expression and rare genetic variation may be related to two platelet traits.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":"e22610"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Kernel Machine Methods for Multi-Omics Integration and Genome-Wide Association Testing With Related Individuals.\",\"authors\":\"Amarise Little, Ni Zhao, Anna Mikhaylova, Angela Zhang, Wodan Ling, Florian Thibord, Andrew D Johnson, Laura M Raffield, Joanne E Curran, John Blangero, Jeffrey R O'Connell, Huichun Xu, Jerome I Rotter, Stephen S Rich, Kenneth M Rice, Ming-Huei Chen, Alexander Reiner, Charles Kooperberg, Thao Vu, Lifang Hou, Myriam Fornage, Ruth J F Loos, Eimear Kenny, Rasika Mathias, Lewis Becker, Albert V Smith, Eric Boerwinkle, Bing Yu, Timothy Thornton, Michael C Wu\",\"doi\":\"10.1002/gepi.22610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.g. genotypes and gene expression levels) on a phenotype, particularly while accommodating routine issues, such as having related subjects' data in analyses. In this paper, we extend an existing composite kernel machine regression model to integrate two multi-omics data types, while accommodating for general correlation structures amongst outcomes. Due to the kernel machine regression framework, our methods allow for the integration of high-dimensional omics data with small, nonlinear, and interactive effects, and accommodation of general study designs. Here, we focus on scientific questions that aim to assess the association between a functional grouping (such as a gene or a pathway) and a quantitative trait of interest. We use a kernel machine regression to integrate the two multi-omics data types, as they may relate to the trait, and perform a global test of association. We demonstrate the advantage of this approach over single data type association tests via simulation. Finally, we apply this method to a large, multi-ethnic data set to investigate how predicted gene expression and rare genetic variation may be related to two platelet traits.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"e22610\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/gepi.22610\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/gepi.22610","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

整合多组学数据可以帮助研究人员了解复杂性状和疾病的遗传基础。然而,整合多组学数据并利用它们来解决紧迫的科学问题的最佳方法仍然是一个挑战。一个重要和热门的问题是如何评估多种基因组数据类型(例如基因型和基因表达水平)对表型的总体影响,特别是在适应常规问题时,例如在分析中使用相关受试者的数据。在本文中,我们扩展了现有的复合核机回归模型,以集成两种多组学数据类型,同时适应结果之间的一般相关结构。由于核机器回归框架,我们的方法允许将高维组学数据与小的、非线性的和交互的效应集成,并适应一般的研究设计。在这里,我们专注于旨在评估功能组(如基因或途径)与感兴趣的数量性状之间关系的科学问题。我们使用核机器回归来整合两种多组学数据类型,因为它们可能与性状相关,并执行关联的全局测试。我们通过模拟演示了这种方法相对于单一数据类型关联测试的优势。最后,我们将这种方法应用于一个大的、多种族的数据集,以研究预测的基因表达和罕见的遗传变异如何与两种血小板性状相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Kernel Machine Methods for Multi-Omics Integration and Genome-Wide Association Testing With Related Individuals.

Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.g. genotypes and gene expression levels) on a phenotype, particularly while accommodating routine issues, such as having related subjects' data in analyses. In this paper, we extend an existing composite kernel machine regression model to integrate two multi-omics data types, while accommodating for general correlation structures amongst outcomes. Due to the kernel machine regression framework, our methods allow for the integration of high-dimensional omics data with small, nonlinear, and interactive effects, and accommodation of general study designs. Here, we focus on scientific questions that aim to assess the association between a functional grouping (such as a gene or a pathway) and a quantitative trait of interest. We use a kernel machine regression to integrate the two multi-omics data types, as they may relate to the trait, and perform a global test of association. We demonstrate the advantage of this approach over single data type association tests via simulation. Finally, we apply this method to a large, multi-ethnic data set to investigate how predicted gene expression and rare genetic variation may be related to two platelet traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信