Suvesh Shrestha, Angelina Addae, Cecily Miller, Nazir Ismail, Alice Zwerling
{"title":"印度、南非和格鲁吉亚检测结核病耐药性的下一代定向测序 (tNGS) 的成本效益:模型分析。","authors":"Suvesh Shrestha, Angelina Addae, Cecily Miller, Nazir Ismail, Alice Zwerling","doi":"10.1016/j.eclinm.2024.103003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.</p><p><strong>Methods: </strong>To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals. We also assessed tNGS as initial test for TB drug resistance in bacteriologically confirmed TB. Diagnostic accuracy and cost data were sourced from a systematic review conducted for GDG, covering studies published until September 2022. The primary outcome was incremental cost (2021 US$) per disability-adjusted life year (DALY) averted.</p><p><strong>Findings: </strong>tNGS when compared with in-country DST, tNGS proved cost-effective in South Africa (ICER: $15,619/DALY averted, WTP: $21,165) but not in Georgia (ICER: $18,375/DALY averted, WTP: $15,069). In India, tNGS dominated in-country DST practice, providing greater health impact at lower cost. When comparing tNGS with universal pDST, tNGS was dominated by pDST in all three countries. In Georgia, using tNGS as initial test for TB drug-resistance compared to Xpert MTB/Rif followed by pDST appeared cost-effective. Scenario with 50% reduction in tNGS test kit costs made tNGS cost-effective across all three countries, while a high Bedaquiline resistance prevalence (30%) led to a worsening cost-effectiveness.</p><p><strong>Interpretation: </strong>tNGS may be cost-effective in India, South Africa and Georgia when comprehensive DST is not routinely performed. Thus, existing DST practice and healthcare infrastructure should be considered before implementation and scale-up of tNGS.</p><p><strong>Funding: </strong>Global Tuberculosis Program, World Health Organization (2022/1249364-0).</p>","PeriodicalId":11393,"journal":{"name":"EClinicalMedicine","volume":"79 ","pages":"103003"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cost-effectiveness of targeted next-generation sequencing (tNGS) for detection of tuberculosis drug resistance in India, South Africa and Georgia: a modeling analysis.\",\"authors\":\"Suvesh Shrestha, Angelina Addae, Cecily Miller, Nazir Ismail, Alice Zwerling\",\"doi\":\"10.1016/j.eclinm.2024.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.</p><p><strong>Methods: </strong>To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals. We also assessed tNGS as initial test for TB drug resistance in bacteriologically confirmed TB. Diagnostic accuracy and cost data were sourced from a systematic review conducted for GDG, covering studies published until September 2022. The primary outcome was incremental cost (2021 US$) per disability-adjusted life year (DALY) averted.</p><p><strong>Findings: </strong>tNGS when compared with in-country DST, tNGS proved cost-effective in South Africa (ICER: $15,619/DALY averted, WTP: $21,165) but not in Georgia (ICER: $18,375/DALY averted, WTP: $15,069). In India, tNGS dominated in-country DST practice, providing greater health impact at lower cost. When comparing tNGS with universal pDST, tNGS was dominated by pDST in all three countries. In Georgia, using tNGS as initial test for TB drug-resistance compared to Xpert MTB/Rif followed by pDST appeared cost-effective. Scenario with 50% reduction in tNGS test kit costs made tNGS cost-effective across all three countries, while a high Bedaquiline resistance prevalence (30%) led to a worsening cost-effectiveness.</p><p><strong>Interpretation: </strong>tNGS may be cost-effective in India, South Africa and Georgia when comprehensive DST is not routinely performed. Thus, existing DST practice and healthcare infrastructure should be considered before implementation and scale-up of tNGS.</p><p><strong>Funding: </strong>Global Tuberculosis Program, World Health Organization (2022/1249364-0).</p>\",\"PeriodicalId\":11393,\"journal\":{\"name\":\"EClinicalMedicine\",\"volume\":\"79 \",\"pages\":\"103003\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EClinicalMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eclinm.2024.103003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EClinicalMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.eclinm.2024.103003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Cost-effectiveness of targeted next-generation sequencing (tNGS) for detection of tuberculosis drug resistance in India, South Africa and Georgia: a modeling analysis.
Background: Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.
Methods: To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals. We also assessed tNGS as initial test for TB drug resistance in bacteriologically confirmed TB. Diagnostic accuracy and cost data were sourced from a systematic review conducted for GDG, covering studies published until September 2022. The primary outcome was incremental cost (2021 US$) per disability-adjusted life year (DALY) averted.
Findings: tNGS when compared with in-country DST, tNGS proved cost-effective in South Africa (ICER: $15,619/DALY averted, WTP: $21,165) but not in Georgia (ICER: $18,375/DALY averted, WTP: $15,069). In India, tNGS dominated in-country DST practice, providing greater health impact at lower cost. When comparing tNGS with universal pDST, tNGS was dominated by pDST in all three countries. In Georgia, using tNGS as initial test for TB drug-resistance compared to Xpert MTB/Rif followed by pDST appeared cost-effective. Scenario with 50% reduction in tNGS test kit costs made tNGS cost-effective across all three countries, while a high Bedaquiline resistance prevalence (30%) led to a worsening cost-effectiveness.
Interpretation: tNGS may be cost-effective in India, South Africa and Georgia when comprehensive DST is not routinely performed. Thus, existing DST practice and healthcare infrastructure should be considered before implementation and scale-up of tNGS.
Funding: Global Tuberculosis Program, World Health Organization (2022/1249364-0).
期刊介绍:
eClinicalMedicine is a gold open-access clinical journal designed to support frontline health professionals in addressing the complex and rapid health transitions affecting societies globally. The journal aims to assist practitioners in overcoming healthcare challenges across diverse communities, spanning diagnosis, treatment, prevention, and health promotion. Integrating disciplines from various specialties and life stages, it seeks to enhance health systems as fundamental institutions within societies. With a forward-thinking approach, eClinicalMedicine aims to redefine the future of healthcare.