{"title":"化学反应和传输中的能量景观。","authors":"Karl-Michael Weitzel","doi":"10.1002/cphc.202400877","DOIUrl":null,"url":null,"abstract":"<p><p>Both, molecular chemical reactions and transport of atoms in solid media are determined by the energy landscape in which the seemingly different processes take place. Chemical reactions can be described as cooperative translocation of two chemical entities on a common potential energy surface. Transport of atoms in a solid can be envisaged as the translocation of a single particle in the potential energy landscape of all other particles constituting the solid. The goal of this manuscript is to demonstrate common grounds but also distinct differences in the physico-chemical processes, their experimental quantification and their theoretical modelling. This work will span the range from the historical foundations all the way to the current challenges. While scientists at the beginning of the 20<sup>th</sup> century where commonly active in both fields, e. g., Wilhelm Jost has pioneered and shaped the field of transport in solids and reaction kinetics in Germany, the fields have drifted apart for the last 50 decades. It is now time to bring the fields together again. Ultimately, it is suggested that knowledge gained in the field of transport may in fact stimulate advancement in the field of molecular reactivity and vice versa. Here, the energy landscapes are pivotal for knowledge-based advancement.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400877"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Landscapes in Chemical Reactions and Transport.\",\"authors\":\"Karl-Michael Weitzel\",\"doi\":\"10.1002/cphc.202400877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both, molecular chemical reactions and transport of atoms in solid media are determined by the energy landscape in which the seemingly different processes take place. Chemical reactions can be described as cooperative translocation of two chemical entities on a common potential energy surface. Transport of atoms in a solid can be envisaged as the translocation of a single particle in the potential energy landscape of all other particles constituting the solid. The goal of this manuscript is to demonstrate common grounds but also distinct differences in the physico-chemical processes, their experimental quantification and their theoretical modelling. This work will span the range from the historical foundations all the way to the current challenges. While scientists at the beginning of the 20<sup>th</sup> century where commonly active in both fields, e. g., Wilhelm Jost has pioneered and shaped the field of transport in solids and reaction kinetics in Germany, the fields have drifted apart for the last 50 decades. It is now time to bring the fields together again. Ultimately, it is suggested that knowledge gained in the field of transport may in fact stimulate advancement in the field of molecular reactivity and vice versa. Here, the energy landscapes are pivotal for knowledge-based advancement.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400877\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400877\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400877","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Energy Landscapes in Chemical Reactions and Transport.
Both, molecular chemical reactions and transport of atoms in solid media are determined by the energy landscape in which the seemingly different processes take place. Chemical reactions can be described as cooperative translocation of two chemical entities on a common potential energy surface. Transport of atoms in a solid can be envisaged as the translocation of a single particle in the potential energy landscape of all other particles constituting the solid. The goal of this manuscript is to demonstrate common grounds but also distinct differences in the physico-chemical processes, their experimental quantification and their theoretical modelling. This work will span the range from the historical foundations all the way to the current challenges. While scientists at the beginning of the 20th century where commonly active in both fields, e. g., Wilhelm Jost has pioneered and shaped the field of transport in solids and reaction kinetics in Germany, the fields have drifted apart for the last 50 decades. It is now time to bring the fields together again. Ultimately, it is suggested that knowledge gained in the field of transport may in fact stimulate advancement in the field of molecular reactivity and vice versa. Here, the energy landscapes are pivotal for knowledge-based advancement.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.