应用人源化CYP2D6模型早期评价阿帕替尼与美托洛尔联合用药的相互作用及性别差异。

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chemical Research in Toxicology Pub Date : 2025-02-17 Epub Date: 2025-01-15 DOI:10.1021/acs.chemrestox.4c00433
Yahui Wang, Qihui Kong, Huiyan Chai, Haidan Hu, Qianwen Zhang, Jianchang Qian, Bingbing Chen
{"title":"应用人源化CYP2D6模型早期评价阿帕替尼与美托洛尔联合用药的相互作用及性别差异。","authors":"Yahui Wang, Qihui Kong, Huiyan Chai, Haidan Hu, Qianwen Zhang, Jianchang Qian, Bingbing Chen","doi":"10.1021/acs.chemrestox.4c00433","DOIUrl":null,"url":null,"abstract":"<p><p>Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood. We used the humanized CYP2D6 mouse model to predict the effect of apatinib on the pharmacokinetics and pharmacodynamics of metoprolol and investigated the interactional mechanism. The inhibitory effects and mechanisms of apatinib on metoprolol were investigated in vitro by using wild-type mouse liver microsomes (WT MLMs), humanized CYP2D6 mouse liver microsomes (hCYP2D6 MLMs), and human liver microsomes (HLMs). Molecular docking was utilized to explore the structural basis of the observed inhibitory mode. And in vivo interaction between apatinib and metoprolol was assessed by pharmacokinetics study using the humanized CYP2D6 mice. In vitro studies and molecular docking experiments indicated that apatinib competitively inhibited the metabolism of metoprolol. In vivo findings revealed that the administration of apatinib combined with metoprolol resulted in a significant increase in the AUC<sub>(0-t)</sub>, AUC<sub>(0-∞)</sub> and <i>C</i><sub>max</sub> of metoprolol; additionally, there was a reduction in the CL<sub><i>z</i></sub>/F and heart rate, indicating that apatinib strongly inhibited metoprolol metabolism. And the homologous CYP2D6 protein in WT mice was more sensitive to apatinib compared to the hCYP2D6 mice. Gender analysis revealed that metoprolol accumulation was more pronounced in male mice when combined with apatinib, indicating a higher susceptibility to cardiotoxicity in males.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"296-306"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Evaluation of the Interaction and Gender Differences in Combination of Apatinib and Metoprolol Using Humanized CYP2D6 Model.\",\"authors\":\"Yahui Wang, Qihui Kong, Huiyan Chai, Haidan Hu, Qianwen Zhang, Jianchang Qian, Bingbing Chen\",\"doi\":\"10.1021/acs.chemrestox.4c00433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood. We used the humanized CYP2D6 mouse model to predict the effect of apatinib on the pharmacokinetics and pharmacodynamics of metoprolol and investigated the interactional mechanism. The inhibitory effects and mechanisms of apatinib on metoprolol were investigated in vitro by using wild-type mouse liver microsomes (WT MLMs), humanized CYP2D6 mouse liver microsomes (hCYP2D6 MLMs), and human liver microsomes (HLMs). Molecular docking was utilized to explore the structural basis of the observed inhibitory mode. And in vivo interaction between apatinib and metoprolol was assessed by pharmacokinetics study using the humanized CYP2D6 mice. In vitro studies and molecular docking experiments indicated that apatinib competitively inhibited the metabolism of metoprolol. In vivo findings revealed that the administration of apatinib combined with metoprolol resulted in a significant increase in the AUC<sub>(0-t)</sub>, AUC<sub>(0-∞)</sub> and <i>C</i><sub>max</sub> of metoprolol; additionally, there was a reduction in the CL<sub><i>z</i></sub>/F and heart rate, indicating that apatinib strongly inhibited metoprolol metabolism. And the homologous CYP2D6 protein in WT mice was more sensitive to apatinib compared to the hCYP2D6 mice. Gender analysis revealed that metoprolol accumulation was more pronounced in male mice when combined with apatinib, indicating a higher susceptibility to cardiotoxicity in males.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"296-306\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00433\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

阿帕替尼是一种治疗癌症的常用酪氨酸激酶抑制剂,可引起高血压等不良反应。而高血压又会增加罹患某些癌症的风险。这些疾病的并存使得联合用药在临床实践中更为常见,但人们对这些联合用药的潜在相互作用和调节机制却知之甚少。我们利用人源化 CYP2D6 小鼠模型预测了阿帕替尼对美托洛尔药代动力学和药效学的影响,并研究了其相互作用机制。我们使用野生型小鼠肝微粒体(WT MLMs)、人源化CYP2D6小鼠肝微粒体(hCYP2D6 MLMs)和人肝微粒体(HLMs)在体外研究了阿帕替尼对美托洛尔的抑制作用和机制。利用分子对接技术探索了所观察到的抑制模式的结构基础。利用人源化CYP2D6小鼠的药代动力学研究评估了阿帕替尼与美托洛尔之间的体内相互作用。体外研究和分子对接实验表明,阿帕替尼竞争性地抑制了美托洛尔的代谢。体内研究结果表明,阿帕替尼与美托洛尔联合用药后,美托洛尔的AUC(0-t)、AUC(0-∞)和Cmax均显著升高,CLz/F和心率降低,表明阿帕替尼强烈抑制了美托洛尔的代谢。与 hCYP2D6 小鼠相比,WT 小鼠的同源 CYP2D6 蛋白对阿帕替尼更敏感。性别分析显示,雄性小鼠与阿帕替尼合用时,美托洛尔的蓄积更明显,这表明雄性小鼠对心脏毒性更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early Evaluation of the Interaction and Gender Differences in Combination of Apatinib and Metoprolol Using Humanized CYP2D6 Model.

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood. We used the humanized CYP2D6 mouse model to predict the effect of apatinib on the pharmacokinetics and pharmacodynamics of metoprolol and investigated the interactional mechanism. The inhibitory effects and mechanisms of apatinib on metoprolol were investigated in vitro by using wild-type mouse liver microsomes (WT MLMs), humanized CYP2D6 mouse liver microsomes (hCYP2D6 MLMs), and human liver microsomes (HLMs). Molecular docking was utilized to explore the structural basis of the observed inhibitory mode. And in vivo interaction between apatinib and metoprolol was assessed by pharmacokinetics study using the humanized CYP2D6 mice. In vitro studies and molecular docking experiments indicated that apatinib competitively inhibited the metabolism of metoprolol. In vivo findings revealed that the administration of apatinib combined with metoprolol resulted in a significant increase in the AUC(0-t), AUC(0-∞) and Cmax of metoprolol; additionally, there was a reduction in the CLz/F and heart rate, indicating that apatinib strongly inhibited metoprolol metabolism. And the homologous CYP2D6 protein in WT mice was more sensitive to apatinib compared to the hCYP2D6 mice. Gender analysis revealed that metoprolol accumulation was more pronounced in male mice when combined with apatinib, indicating a higher susceptibility to cardiotoxicity in males.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信