用于单分子FRET跟踪理想化的预训练深度神经网络Kin-SiM。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Leyou Zhang, Jieming Li, Nils G Walter
{"title":"用于单分子FRET跟踪理想化的预训练深度神经网络Kin-SiM。","authors":"Leyou Zhang, Jieming Li, Nils G Walter","doi":"10.1021/acs.jpcb.4c05276","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states. Conventional trace idealization methods based on hidden Markov models (HMMs) require substantial a priori knowledge of the system under study, manual intervention, and assumptions about the number of states and transition probabilities. Here, we present a deep learning framework using long short-term memory (LSTM) to automate the trace idealization, termed Kin-SiM. Our approach employs neural networks pretrained on simulated data to learn high-order correlations in the multidimensional FRET trajectories. Without user input of Markovian assumptions, the trained LSTM networks directly idealize the FRET traces to extract the number of underlying biomolecular states, their interstate dynamics, and associated kinetic parameters. On benchmark smFRET data sets, Kin-SiM achieves a performance similar to conventional HMM-based methods but with less hands-on time and lower risk of bias. We further systematically evaluate the key training factors that affect network performance to define the correct hyperparameter tuning for applying deep neural networks to smFRET data analyses.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.\",\"authors\":\"Leyou Zhang, Jieming Li, Nils G Walter\",\"doi\":\"10.1021/acs.jpcb.4c05276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states. Conventional trace idealization methods based on hidden Markov models (HMMs) require substantial a priori knowledge of the system under study, manual intervention, and assumptions about the number of states and transition probabilities. Here, we present a deep learning framework using long short-term memory (LSTM) to automate the trace idealization, termed Kin-SiM. Our approach employs neural networks pretrained on simulated data to learn high-order correlations in the multidimensional FRET trajectories. Without user input of Markovian assumptions, the trained LSTM networks directly idealize the FRET traces to extract the number of underlying biomolecular states, their interstate dynamics, and associated kinetic parameters. On benchmark smFRET data sets, Kin-SiM achieves a performance similar to conventional HMM-based methods but with less hands-on time and lower risk of bias. We further systematically evaluate the key training factors that affect network performance to define the correct hyperparameter tuning for applying deep neural networks to smFRET data analyses.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c05276\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05276","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

单分子荧光共振能量转移(smFRET)已经成为在纳米尺度上探测生物分子动力学的关键技术。由于诸如低信噪比、漂白和闪烁等光物理效应以及潜在生物分子状态和动力学建模的复杂性等混杂因素,smFRET时间轨迹的定量分析仍然具有挑战性。形成smFRET轨迹的动态距离信息有力地揭示了单个生物分子在平衡或远离平衡时的瞬时构象变化,依靠轨迹理想化来识别特定的相互转换状态。传统的基于隐马尔可夫模型(hmm)的轨迹理想化方法需要对所研究的系统有大量的先验知识、人工干预以及对状态数量和转移概率的假设。在这里,我们提出了一个使用长短期记忆(LSTM)来自动化跟踪理想化的深度学习框架,称为Kin-SiM。我们的方法采用在模拟数据上预训练的神经网络来学习多维FRET轨迹中的高阶相关性。在没有用户输入马尔可夫假设的情况下,经过训练的LSTM网络直接理想化FRET轨迹,以提取潜在生物分子状态的数量、它们的州际动力学和相关的动力学参数。在基准smFRET数据集上,Kin-SiM实现了与传统基于hmm的方法相似的性能,但操作时间更少,偏差风险更低。我们进一步系统地评估影响网络性能的关键训练因素,以定义将深度神经网络应用于smFRET数据分析的正确超参数调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states. Conventional trace idealization methods based on hidden Markov models (HMMs) require substantial a priori knowledge of the system under study, manual intervention, and assumptions about the number of states and transition probabilities. Here, we present a deep learning framework using long short-term memory (LSTM) to automate the trace idealization, termed Kin-SiM. Our approach employs neural networks pretrained on simulated data to learn high-order correlations in the multidimensional FRET trajectories. Without user input of Markovian assumptions, the trained LSTM networks directly idealize the FRET traces to extract the number of underlying biomolecular states, their interstate dynamics, and associated kinetic parameters. On benchmark smFRET data sets, Kin-SiM achieves a performance similar to conventional HMM-based methods but with less hands-on time and lower risk of bias. We further systematically evaluate the key training factors that affect network performance to define the correct hyperparameter tuning for applying deep neural networks to smFRET data analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信