Maximilian Zäh, Christoph Brandenbusch, Sebastian Groël, Gerhard Winter, Gabriele Sadowski
{"title":"水活度作为冻干制剂中抗体储存稳定性的指标。","authors":"Maximilian Zäh, Christoph Brandenbusch, Sebastian Groël, Gerhard Winter, Gabriele Sadowski","doi":"10.1021/acs.molpharmaceut.4c01106","DOIUrl":null,"url":null,"abstract":"<p><p>Lyophilization remains a key method for preserving sensitive biopharmaceuticals such as monoclonal antibodies. Traditionally, stabilization mechanisms have been explained by vitrification, which minimizes molecular mobility in the lyophilized cake, and water replacement, which restores molecular interactions disrupted by water removal. This study proposes a novel design strategy that combines water activity and glass-transition temperature as the main indicators to predict long-term stability in lyophilized formulations. The water activity, calculated as the product of water activity coefficient and (residual) water content, serves as a mutual indicator of molecular interactions and influence of residual water content in the lyophilizate. By predicting beneficial excipient combinations through activity coefficient calculations using the perturbed-chain statistical association fluid theory model and calculating <i>T</i><sub>g</sub> using the Gordon-Taylor equation, the study identifies favorable excipient systems, such as sucrose/ectoine mixtures, providing formulation windows that offer broad stability ranges. The approach was validated with stability studies, confirming that formulations within a water activity range of 0.025-0.25 exhibit high (long-term) stability. This work advances formulation development by integrating water-excipient interactions and residual moisture content into a predictive model, moving beyond traditional empirical methods and offering a robust pathway to the design of stable biopharmaceutical formulations. This makes it possible to achieve high/favorable water activities despite low residual moisture (thus, high glass-transition temperatures) with plausible excipient concentrations and combinations.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Activity as an Indicator for Antibody Storage Stability in Lyophilized Formulations.\",\"authors\":\"Maximilian Zäh, Christoph Brandenbusch, Sebastian Groël, Gerhard Winter, Gabriele Sadowski\",\"doi\":\"10.1021/acs.molpharmaceut.4c01106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lyophilization remains a key method for preserving sensitive biopharmaceuticals such as monoclonal antibodies. Traditionally, stabilization mechanisms have been explained by vitrification, which minimizes molecular mobility in the lyophilized cake, and water replacement, which restores molecular interactions disrupted by water removal. This study proposes a novel design strategy that combines water activity and glass-transition temperature as the main indicators to predict long-term stability in lyophilized formulations. The water activity, calculated as the product of water activity coefficient and (residual) water content, serves as a mutual indicator of molecular interactions and influence of residual water content in the lyophilizate. By predicting beneficial excipient combinations through activity coefficient calculations using the perturbed-chain statistical association fluid theory model and calculating <i>T</i><sub>g</sub> using the Gordon-Taylor equation, the study identifies favorable excipient systems, such as sucrose/ectoine mixtures, providing formulation windows that offer broad stability ranges. The approach was validated with stability studies, confirming that formulations within a water activity range of 0.025-0.25 exhibit high (long-term) stability. This work advances formulation development by integrating water-excipient interactions and residual moisture content into a predictive model, moving beyond traditional empirical methods and offering a robust pathway to the design of stable biopharmaceutical formulations. This makes it possible to achieve high/favorable water activities despite low residual moisture (thus, high glass-transition temperatures) with plausible excipient concentrations and combinations.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01106\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Water Activity as an Indicator for Antibody Storage Stability in Lyophilized Formulations.
Lyophilization remains a key method for preserving sensitive biopharmaceuticals such as monoclonal antibodies. Traditionally, stabilization mechanisms have been explained by vitrification, which minimizes molecular mobility in the lyophilized cake, and water replacement, which restores molecular interactions disrupted by water removal. This study proposes a novel design strategy that combines water activity and glass-transition temperature as the main indicators to predict long-term stability in lyophilized formulations. The water activity, calculated as the product of water activity coefficient and (residual) water content, serves as a mutual indicator of molecular interactions and influence of residual water content in the lyophilizate. By predicting beneficial excipient combinations through activity coefficient calculations using the perturbed-chain statistical association fluid theory model and calculating Tg using the Gordon-Taylor equation, the study identifies favorable excipient systems, such as sucrose/ectoine mixtures, providing formulation windows that offer broad stability ranges. The approach was validated with stability studies, confirming that formulations within a water activity range of 0.025-0.25 exhibit high (long-term) stability. This work advances formulation development by integrating water-excipient interactions and residual moisture content into a predictive model, moving beyond traditional empirical methods and offering a robust pathway to the design of stable biopharmaceutical formulations. This makes it possible to achieve high/favorable water activities despite low residual moisture (thus, high glass-transition temperatures) with plausible excipient concentrations and combinations.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.