Fangyu Zhang, Linhui Lv, Zihao Xu, Diancong Qi, Weiyi Wang, Xingxing Li, Ya Su, Yanyan Jiang, Zhaoyong Guan
{"title":"具有自插层的TiS2双分子层的预测:高居里温度的稳健铁磁半导体","authors":"Fangyu Zhang, Linhui Lv, Zihao Xu, Diancong Qi, Weiyi Wang, Xingxing Li, Ya Su, Yanyan Jiang, Zhaoyong Guan","doi":"10.1021/acs.jpcc.4c06216","DOIUrl":null,"url":null,"abstract":"The search for new two-dimensional magnetic materials has been a hot topic since the discovery of graphene in 2004 as these materials play a crucial role in fields such as spintronics. In this study, we systematically investigated the 2H-TiS<sub>2</sub> bilayer with self-intercalation (SI) of the Ti atom, revealing that SI can introduce magnetism to a nonmagnetic 2H-TiS<sub>2</sub>. Taking Ti<sub>19</sub>S<sub>36</sub>-AB stacking as an example, we find that 2H–SI–TiS<sub>2</sub> exhibits a ferromagnetic order with a Curie temperature of 377 K. Ti<sub>19</sub>S<sub>36</sub> shows perpendicular magnetic anisotropy, with a magnetic anisotropy energy (MAE) of 7.43 × 10<sup>–2</sup> meV. Additionally, the MAE increases as the self-intercalated Ti’s (Ti<sub>SI</sub>) concentration (<i>x</i>) decreases, attributed to the enhanced hybridization interaction between the <i>d</i><sub><i>x</i><sup>2</sup>–<i>y</i><sup>2</sup></sub> and <i>d</i><sub><i>xy</i></sub> orbitals of Ti atoms. Ti<sub>19</sub>S<sub>36</sub>-AB stacking is identified as a bipolar magnetic semiconductor (BMS) with an indirect band gap of 0.53 eV. As <i>x</i> increases, Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> transitions from BMS to half-semiconductor (HSC) and metal and then back to HSC, demonstrating a rich phase. Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> shows good dynamic and thermodynamic stabilities at 300 and 500 K, respectively. Furthermore, the formation energy (ε<sub>f</sub>) of Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> increases monotonically with rising <i>x</i>. Moreover, Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> can be easily synthesized under higher μ<sub>Ti</sub>. The migration barrier of Ti<sub>SI</sub> between adjacent coordination sites is 0.740 eV, further confirming the stability of the self-intercalated structure. These findings imply the potential of 2H-TiS<sub>2</sub> and nonmagnetic transition metal dichalcogenides in spintronics.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"2 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the TiS2 Bilayer with Self-Intercalation: Robust Ferromagnetic Semiconductor with a High Curie Temperature\",\"authors\":\"Fangyu Zhang, Linhui Lv, Zihao Xu, Diancong Qi, Weiyi Wang, Xingxing Li, Ya Su, Yanyan Jiang, Zhaoyong Guan\",\"doi\":\"10.1021/acs.jpcc.4c06216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for new two-dimensional magnetic materials has been a hot topic since the discovery of graphene in 2004 as these materials play a crucial role in fields such as spintronics. In this study, we systematically investigated the 2H-TiS<sub>2</sub> bilayer with self-intercalation (SI) of the Ti atom, revealing that SI can introduce magnetism to a nonmagnetic 2H-TiS<sub>2</sub>. Taking Ti<sub>19</sub>S<sub>36</sub>-AB stacking as an example, we find that 2H–SI–TiS<sub>2</sub> exhibits a ferromagnetic order with a Curie temperature of 377 K. Ti<sub>19</sub>S<sub>36</sub> shows perpendicular magnetic anisotropy, with a magnetic anisotropy energy (MAE) of 7.43 × 10<sup>–2</sup> meV. Additionally, the MAE increases as the self-intercalated Ti’s (Ti<sub>SI</sub>) concentration (<i>x</i>) decreases, attributed to the enhanced hybridization interaction between the <i>d</i><sub><i>x</i><sup>2</sup>–<i>y</i><sup>2</sup></sub> and <i>d</i><sub><i>xy</i></sub> orbitals of Ti atoms. Ti<sub>19</sub>S<sub>36</sub>-AB stacking is identified as a bipolar magnetic semiconductor (BMS) with an indirect band gap of 0.53 eV. As <i>x</i> increases, Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> transitions from BMS to half-semiconductor (HSC) and metal and then back to HSC, demonstrating a rich phase. Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> shows good dynamic and thermodynamic stabilities at 300 and 500 K, respectively. Furthermore, the formation energy (ε<sub>f</sub>) of Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> increases monotonically with rising <i>x</i>. Moreover, Ti<sub><i>m</i></sub>S<sub><i>n</i></sub> can be easily synthesized under higher μ<sub>Ti</sub>. The migration barrier of Ti<sub>SI</sub> between adjacent coordination sites is 0.740 eV, further confirming the stability of the self-intercalated structure. These findings imply the potential of 2H-TiS<sub>2</sub> and nonmagnetic transition metal dichalcogenides in spintronics.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c06216\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06216","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
自 2004 年发现石墨烯以来,寻找新型二维磁性材料一直是一个热门话题,因为这些材料在自旋电子学等领域发挥着至关重要的作用。在本研究中,我们系统地研究了具有钛原子自掺杂(SI)的 2H-TiS2 双分子层,发现 SI 可以为非磁性的 2H-TiS2 引入磁性。以 Ti19S36-AB 堆叠为例,我们发现 2H-SI-TiS2 具有居里温度为 377 K 的铁磁性。Ti19S36 显示出垂直磁各向异性,磁各向异性能(MAE)为 7.43 × 10-2 meV。此外,磁各向异性能随着自掺杂钛(TiSI)浓度(x)的降低而增加,这归因于钛原子的 dx2-y2 和 dxy 轨道之间增强的杂化相互作用。Ti19S36-AB 堆垛被确定为双极磁性半导体(BMS),其间接带隙为 0.53 eV。随着 x 的增加,TimSn 从双极磁性半导体(BMS)转变为半半导体(HSC)和金属,然后又回到 HSC,显示出丰富的相位。TimSn 在 300 K 和 500 K 下分别表现出良好的动态稳定性和热力学稳定性。此外,TimSn 的形成能(εf)随 x 的增加而单调增加。相邻配位之间的 TiSI 迁移势垒为 0.740 eV,进一步证实了自钝化结构的稳定性。这些发现意味着 2H-TiS2 和非磁性过渡金属二卤化物在自旋电子学中的潜力。
Prediction of the TiS2 Bilayer with Self-Intercalation: Robust Ferromagnetic Semiconductor with a High Curie Temperature
The search for new two-dimensional magnetic materials has been a hot topic since the discovery of graphene in 2004 as these materials play a crucial role in fields such as spintronics. In this study, we systematically investigated the 2H-TiS2 bilayer with self-intercalation (SI) of the Ti atom, revealing that SI can introduce magnetism to a nonmagnetic 2H-TiS2. Taking Ti19S36-AB stacking as an example, we find that 2H–SI–TiS2 exhibits a ferromagnetic order with a Curie temperature of 377 K. Ti19S36 shows perpendicular magnetic anisotropy, with a magnetic anisotropy energy (MAE) of 7.43 × 10–2 meV. Additionally, the MAE increases as the self-intercalated Ti’s (TiSI) concentration (x) decreases, attributed to the enhanced hybridization interaction between the dx2–y2 and dxy orbitals of Ti atoms. Ti19S36-AB stacking is identified as a bipolar magnetic semiconductor (BMS) with an indirect band gap of 0.53 eV. As x increases, TimSn transitions from BMS to half-semiconductor (HSC) and metal and then back to HSC, demonstrating a rich phase. TimSn shows good dynamic and thermodynamic stabilities at 300 and 500 K, respectively. Furthermore, the formation energy (εf) of TimSn increases monotonically with rising x. Moreover, TimSn can be easily synthesized under higher μTi. The migration barrier of TiSI between adjacent coordination sites is 0.740 eV, further confirming the stability of the self-intercalated structure. These findings imply the potential of 2H-TiS2 and nonmagnetic transition metal dichalcogenides in spintronics.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.