转型中的流行病学方法:最小化经典方法和数字方法的偏差。

PLOS digital health Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1371/journal.pdig.0000670
Sara Mesquita, Lília Perfeito, Daniela Paolotti, Joana Gonçalves-Sá
{"title":"转型中的流行病学方法:最小化经典方法和数字方法的偏差。","authors":"Sara Mesquita, Lília Perfeito, Daniela Paolotti, Joana Gonçalves-Sá","doi":"10.1371/journal.pdig.0000670","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes \"data-type\" instead of \"data-source,\" may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 1","pages":"e0000670"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epidemiological methods in transition: Minimizing biases in classical and digital approaches.\",\"authors\":\"Sara Mesquita, Lília Perfeito, Daniela Paolotti, Joana Gonçalves-Sá\",\"doi\":\"10.1371/journal.pdig.0000670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes \\\"data-type\\\" instead of \\\"data-source,\\\" may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 1\",\"pages\":\"e0000670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流行病学和公共卫生越来越依赖于在典型卫生系统内外收集的结构化和非结构化数据,以研究、识别和减轻人群层面的疾病。以传染病为重点,我们回顾了2020年初数字流行病学的状况,以及在2019冠状病毒病大流行之后它在性质和广度上的变化。我们认为,流行病学对临床和公共卫生系统之外产生的数据的逐步使用带来了几个技术挑战,特别是在携带几乎不可能先验纠正的特定偏见方面。从统计学的角度来看,通过澄清关键的方法差异和差距,我们讨论了强调“数据类型”而不是“数据源”的数字流行病学定义如何在操作上更有用。因此,我们简要描述了各种收集方法和来源可能产生的一些偏差,并提出了一些建议,以更好地探索数字流行病学的潜力,特别是如何帮助减少不平等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epidemiological methods in transition: Minimizing biases in classical and digital approaches.

Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes "data-type" instead of "data-source," may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信