{"title":"基于内存库计算的节能多模态零学习。","authors":"","doi":"10.1038/s43588-024-00762-w","DOIUrl":null,"url":null,"abstract":"To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections on a hybrid analog–digital system, demonstrating zero-shot learning for multimodal event data.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 1","pages":"11-12"},"PeriodicalIF":12.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient multimodal zero-shot learning using in-memory reservoir computing\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00762-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections on a hybrid analog–digital system, demonstrating zero-shot learning for multimodal event data.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 1\",\"pages\":\"11-12\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00762-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00762-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Energy-efficient multimodal zero-shot learning using in-memory reservoir computing
To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections on a hybrid analog–digital system, demonstrating zero-shot learning for multimodal event data.