Bingchen Li, Qiming He, Jing Chang, Bo Yang, Xi Tang, Yonghong He, Tian Guan, Guangde Zhou
{"title":"通过可解释的深度学习框架实现肝脏活检的高效分级。","authors":"Bingchen Li, Qiming He, Jing Chang, Bo Yang, Xi Tang, Yonghong He, Tian Guan, Guangde Zhou","doi":"10.1007/s11517-024-03266-x","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of chronic liver diseases, where variability in progression necessitates early and precise diagnosis, this study addresses the limitations of traditional histological analysis and the shortcomings of existing deep learning approaches. A novel patch-level classification model employing multi-scale feature extraction and fusion was developed to enhance the grading accuracy and interpretability of liver biopsies, analyzing 1322 cases across various staining methods. The study also introduces a slide-level aggregation framework, comparing different diagnostic models, to efficiently integrate local histological information. Results from extensive validation show that the slide-level model consistently achieved high F1 scores, notably 0.9 for inflammatory activity and steatosis, and demonstrated rapid diagnostic capabilities with less than one minute per slide on average. The patch-level model also performed well, with an F1 score of 0.64 for ballooning and 0.99 for other indicators, and proved transferable to public datasets. The conclusion drawn is that the proposed analytical framework offers a reliable basis for the diagnosis and treatment of chronic liver diseases, with the added benefit of robust interpretability, suggesting its practical utility in clinical settings.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"1435-1449"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward efficient slide-level grading of liver biopsy via explainable deep learning framework.\",\"authors\":\"Bingchen Li, Qiming He, Jing Chang, Bo Yang, Xi Tang, Yonghong He, Tian Guan, Guangde Zhou\",\"doi\":\"10.1007/s11517-024-03266-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of chronic liver diseases, where variability in progression necessitates early and precise diagnosis, this study addresses the limitations of traditional histological analysis and the shortcomings of existing deep learning approaches. A novel patch-level classification model employing multi-scale feature extraction and fusion was developed to enhance the grading accuracy and interpretability of liver biopsies, analyzing 1322 cases across various staining methods. The study also introduces a slide-level aggregation framework, comparing different diagnostic models, to efficiently integrate local histological information. Results from extensive validation show that the slide-level model consistently achieved high F1 scores, notably 0.9 for inflammatory activity and steatosis, and demonstrated rapid diagnostic capabilities with less than one minute per slide on average. The patch-level model also performed well, with an F1 score of 0.64 for ballooning and 0.99 for other indicators, and proved transferable to public datasets. The conclusion drawn is that the proposed analytical framework offers a reliable basis for the diagnosis and treatment of chronic liver diseases, with the added benefit of robust interpretability, suggesting its practical utility in clinical settings.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"1435-1449\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03266-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03266-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Toward efficient slide-level grading of liver biopsy via explainable deep learning framework.
In the context of chronic liver diseases, where variability in progression necessitates early and precise diagnosis, this study addresses the limitations of traditional histological analysis and the shortcomings of existing deep learning approaches. A novel patch-level classification model employing multi-scale feature extraction and fusion was developed to enhance the grading accuracy and interpretability of liver biopsies, analyzing 1322 cases across various staining methods. The study also introduces a slide-level aggregation framework, comparing different diagnostic models, to efficiently integrate local histological information. Results from extensive validation show that the slide-level model consistently achieved high F1 scores, notably 0.9 for inflammatory activity and steatosis, and demonstrated rapid diagnostic capabilities with less than one minute per slide on average. The patch-level model also performed well, with an F1 score of 0.64 for ballooning and 0.99 for other indicators, and proved transferable to public datasets. The conclusion drawn is that the proposed analytical framework offers a reliable basis for the diagnosis and treatment of chronic liver diseases, with the added benefit of robust interpretability, suggesting its practical utility in clinical settings.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).