基于区块链的脑中风预测数字孪生系统。

Q1 Computer Science
Venkatesh Upadrista, Sajid Nazir, Huaglory Tianfield
{"title":"基于区块链的脑中风预测数字孪生系统。","authors":"Venkatesh Upadrista, Sajid Nazir, Huaglory Tianfield","doi":"10.1186/s40708-024-00247-6","DOIUrl":null,"url":null,"abstract":"<p><p>A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blockchain-enabled digital twin system for brain stroke prediction.\",\"authors\":\"Venkatesh Upadrista, Sajid Nazir, Huaglory Tianfield\",\"doi\":\"10.1186/s40708-024-00247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00247-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00247-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生是实时更新的真实世界系统的虚拟模型。在医疗保健领域,数字孪生在监测饮食、体力活动和睡眠等活动方面越来越受欢迎。然而,它们在预测心脏病、脑卒中和癌症等严重疾病方面的应用仍在研究之中,目前的研究显示,这类预测的准确性有限。此外,人们对数据安全和隐私的担忧也对这些模型的广泛应用提出了挑战。为了应对这些挑战,我们开发了一个安全的、由机器学习驱动的数字孪生应用,其三大目标是提高预测准确性、加强安全性和确保可扩展性。在选定的数据集上,该应用的脑中风预测准确率达到了 98.28%。通过将联盟区块链技术与机器学习相结合,提高了数据的安全性。结果表明,该应用程序具有防篡改功能,能够检测并自动纠正后台数据异常,以保持稳健的数据保护。该应用可扩展到监测其他病症,如心脏病、癌症、骨质疏松症和癫痫,只需对配置进行最小的改动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blockchain-enabled digital twin system for brain stroke prediction.

A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信