{"title":"基于区块链的脑中风预测数字孪生系统。","authors":"Venkatesh Upadrista, Sajid Nazir, Huaglory Tianfield","doi":"10.1186/s40708-024-00247-6","DOIUrl":null,"url":null,"abstract":"<p><p>A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blockchain-enabled digital twin system for brain stroke prediction.\",\"authors\":\"Venkatesh Upadrista, Sajid Nazir, Huaglory Tianfield\",\"doi\":\"10.1186/s40708-024-00247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00247-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00247-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Blockchain-enabled digital twin system for brain stroke prediction.
A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions. Moreover, concerns around data security and privacy continue to challenge the widespread adoption of these models. To address these challenges, we developed a secure, machine learning powered digital twin application with three main objectives enhancing prediction accuracy, strengthening security, and ensuring scalability. The application achieved an accuracy of 98.28% for brain stroke prediction on the selected dataset. The data security was enhanced by integrating consortium blockchain technology with machine learning. The results show that the application is tamper-proof and is capable of detecting and automatically correcting backend data anomalies to maintain robust data protection. The application can be extended to monitor other pathologies such as heart attacks, cancers, osteoporosis, and epilepsy with minimal configuration changes.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing