{"title":"利用合成细胞器在活细菌中探测snare介导的膜融合。","authors":"Christian Vannier, Thierry Galli","doi":"10.1007/978-1-0716-4314-3_19","DOIUrl":null,"url":null,"abstract":"<p><p>Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2887 ","pages":"263-280"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SNARE-Mediated Membrane Fusion Probed Using a Synthetic Organelle in the Living Bacterium.\",\"authors\":\"Christian Vannier, Thierry Galli\",\"doi\":\"10.1007/978-1-0716-4314-3_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2887 \",\"pages\":\"263-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4314-3_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4314-3_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
SNARE-Mediated Membrane Fusion Probed Using a Synthetic Organelle in the Living Bacterium.
Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.