利用合成细胞器在活细菌中探测snare介导的膜融合。

Q4 Biochemistry, Genetics and Molecular Biology
Christian Vannier, Thierry Galli
{"title":"利用合成细胞器在活细菌中探测snare介导的膜融合。","authors":"Christian Vannier, Thierry Galli","doi":"10.1007/978-1-0716-4314-3_19","DOIUrl":null,"url":null,"abstract":"<p><p>Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2887 ","pages":"263-280"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SNARE-Mediated Membrane Fusion Probed Using a Synthetic Organelle in the Living Bacterium.\",\"authors\":\"Christian Vannier, Thierry Galli\",\"doi\":\"10.1007/978-1-0716-4314-3_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2887 \",\"pages\":\"263-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4314-3_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4314-3_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

SNARE蛋白功能组装介导膜融合的机制和调控研究主要利用重组蛋白和人工磷脂双分子层。我们已经开发了一种易于使用的体内系统,在活细菌中重建膜融合。它依赖于小泡蛋白依赖的胞浆内池的形成,随后是突触SNARE机制成员的受控合成。只有当SNARE复合体与其完整的组分形成时,池池和质膜之间才会发生对接和随后的融合,并伴随着前者的消失。细菌细胞对融合事件的表型反应是由于质膜的扩张而显着增加细胞体长度。因此,这种易于观察的表型使该系统适合于SNAREs的结构-功能研究。我们在这里描述了在细菌转化过程中从相容的质粒中产生小窝蛋白和SNARE蛋白并获得细长细胞表型的具体方法。我们还提供方案,以进行制备细胞培养样品适合生化和光显微镜分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNARE-Mediated Membrane Fusion Probed Using a Synthetic Organelle in the Living Bacterium.

Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery. Only when a SNARE complex is formed with its intact components does the docking and subsequent fusion occur between the cisternae and the plasma membrane that is accompanied by the disappearance of the former. The phenotypic response of the bacterial cell to fusion events is a remarkable increase in cell body length due to an expansion of the plasma membrane. Therefore, such an easy-to-observe phenotype makes this system amenable to structure-function studies of SNAREs. We describe here the specific ways to produce caveolin and the SNARE proteins from compatible plasmids upon bacterial transformation and to obtain the elongated cell phenotype. We also provide protocols to carry out the preparation of cell culture samples suitable for biochemical and light microscopy analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信