下载PDF
{"title":"Banach代数中李积公式类型的新极限","authors":"Dumitru Popa","doi":"10.1007/s13324-024-01002-0","DOIUrl":null,"url":null,"abstract":"<div><p>We find new limits of the Lie product formula type in Banach algebras with unit. Some sample results: Let <i>X</i>, <i>Y</i>, <i>Z</i> be Banach algebras with unit, <span>\\( \\left( x_{n},y_{n}\\right) _{n\\in \\mathbb {N}}\\subset X\\times Y\\)</span> convergent sequences with <span>\\(\\lim \\nolimits _{n\\rightarrow \\infty }x_{n}=x\\)</span>, <span>\\( \\lim \\nolimits _{n\\rightarrow \\infty }y_{n}=y\\)</span> and <span>\\(T:X\\times Y\\rightarrow Z\\)</span> a continuous bilinear operator with <span>\\(T\\left( \\textbf{1},\\textbf{1}\\right) = \\textbf{1}\\)</span>. Then for all sequences of natural numbers <span>\\(\\left( a_{n}\\right) _{n\\in \\mathbb {N}}\\)</span> with <span>\\(\\lim \\nolimits _{n\\rightarrow \\infty }a_{n}=\\infty \\)</span> we have </p><div><div><span>$$\\begin{aligned} \\lim \\limits _{n\\rightarrow \\infty }\\left[ T\\left( \\prod \\limits _{k=1}^{n}e^{ \\frac{x_{k}}{a_{n}\\left( k+n\\right) \\left( k+2n\\right) }},\\prod \\limits _{k=1}^{n}e^{\\frac{y_{k}}{a_{n}\\left( k+2n\\right) \\left( k+3n\\right) } }\\right) \\right] ^{a_{n}}=e^{\\left( \\ln \\frac{4}{3}\\right) T\\left( x,\\textbf{ 1}\\right) +\\left( \\ln 2\\right) T\\left( \\textbf{1},y\\right) }; \\end{aligned}$$</span></div></div><div><div><span>$$\\begin{aligned} \\lim \\limits _{n\\rightarrow \\infty }\\left[ T\\left( \\prod \\limits _{k=1}^{n}\\cos \\frac{x_{k}}{a_{n}\\sqrt{n\\left( n+k\\right) }},\\prod \\limits _{k=1}^{n}\\cos \\frac{ky_{k}}{na_{n}\\sqrt{n^{2}+k^{2}}}\\right) \\right] ^{na_{n}^{2}} \\end{aligned}$$</span></div></div><div><div><span>$$\\begin{aligned} =e^{-\\frac{\\left( \\ln 2\\right) T\\left( x^{2},\\textbf{1}\\right) +\\left( 1- \\frac{\\pi }{4}\\right) T\\left( \\textbf{1},y^{2}\\right) }{2}}. \\end{aligned}$$</span></div></div></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-01002-0.pdf","citationCount":"0","resultStr":"{\"title\":\"New limits of the Lie product formula type in Banach algebras\",\"authors\":\"Dumitru Popa\",\"doi\":\"10.1007/s13324-024-01002-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We find new limits of the Lie product formula type in Banach algebras with unit. Some sample results: Let <i>X</i>, <i>Y</i>, <i>Z</i> be Banach algebras with unit, <span>\\\\( \\\\left( x_{n},y_{n}\\\\right) _{n\\\\in \\\\mathbb {N}}\\\\subset X\\\\times Y\\\\)</span> convergent sequences with <span>\\\\(\\\\lim \\\\nolimits _{n\\\\rightarrow \\\\infty }x_{n}=x\\\\)</span>, <span>\\\\( \\\\lim \\\\nolimits _{n\\\\rightarrow \\\\infty }y_{n}=y\\\\)</span> and <span>\\\\(T:X\\\\times Y\\\\rightarrow Z\\\\)</span> a continuous bilinear operator with <span>\\\\(T\\\\left( \\\\textbf{1},\\\\textbf{1}\\\\right) = \\\\textbf{1}\\\\)</span>. Then for all sequences of natural numbers <span>\\\\(\\\\left( a_{n}\\\\right) _{n\\\\in \\\\mathbb {N}}\\\\)</span> with <span>\\\\(\\\\lim \\\\nolimits _{n\\\\rightarrow \\\\infty }a_{n}=\\\\infty \\\\)</span> we have </p><div><div><span>$$\\\\begin{aligned} \\\\lim \\\\limits _{n\\\\rightarrow \\\\infty }\\\\left[ T\\\\left( \\\\prod \\\\limits _{k=1}^{n}e^{ \\\\frac{x_{k}}{a_{n}\\\\left( k+n\\\\right) \\\\left( k+2n\\\\right) }},\\\\prod \\\\limits _{k=1}^{n}e^{\\\\frac{y_{k}}{a_{n}\\\\left( k+2n\\\\right) \\\\left( k+3n\\\\right) } }\\\\right) \\\\right] ^{a_{n}}=e^{\\\\left( \\\\ln \\\\frac{4}{3}\\\\right) T\\\\left( x,\\\\textbf{ 1}\\\\right) +\\\\left( \\\\ln 2\\\\right) T\\\\left( \\\\textbf{1},y\\\\right) }; \\\\end{aligned}$$</span></div></div><div><div><span>$$\\\\begin{aligned} \\\\lim \\\\limits _{n\\\\rightarrow \\\\infty }\\\\left[ T\\\\left( \\\\prod \\\\limits _{k=1}^{n}\\\\cos \\\\frac{x_{k}}{a_{n}\\\\sqrt{n\\\\left( n+k\\\\right) }},\\\\prod \\\\limits _{k=1}^{n}\\\\cos \\\\frac{ky_{k}}{na_{n}\\\\sqrt{n^{2}+k^{2}}}\\\\right) \\\\right] ^{na_{n}^{2}} \\\\end{aligned}$$</span></div></div><div><div><span>$$\\\\begin{aligned} =e^{-\\\\frac{\\\\left( \\\\ln 2\\\\right) T\\\\left( x^{2},\\\\textbf{1}\\\\right) +\\\\left( 1- \\\\frac{\\\\pi }{4}\\\\right) T\\\\left( \\\\textbf{1},y^{2}\\\\right) }{2}}. \\\\end{aligned}$$</span></div></div></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-01002-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-01002-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-01002-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
在带单位的Banach代数中,得到了李积公式类型的新极限。一些示例结果:设X, Y, Z是具有单位的Banach代数,\( \left( x_{n},y_{n}\right) _{n\in \mathbb {N}}\subset X\times Y\)具有\(\lim \nolimits _{n\rightarrow \infty }x_{n}=x\), \( \lim \nolimits _{n\rightarrow \infty }y_{n}=y\), \(T:X\times Y\rightarrow Z\)的收敛序列,一个具有\(T\left( \textbf{1},\textbf{1}\right) = \textbf{1}\)的连续双线性算子。对于所有的自然数序列\(\left( a_{n}\right) _{n\in \mathbb {N}}\)和\(\lim \nolimits _{n\rightarrow \infty }a_{n}=\infty \),我们有 $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left[ T\left( \prod \limits _{k=1}^{n}e^{ \frac{x_{k}}{a_{n}\left( k+n\right) \left( k+2n\right) }},\prod \limits _{k=1}^{n}e^{\frac{y_{k}}{a_{n}\left( k+2n\right) \left( k+3n\right) } }\right) \right] ^{a_{n}}=e^{\left( \ln \frac{4}{3}\right) T\left( x,\textbf{ 1}\right) +\left( \ln 2\right) T\left( \textbf{1},y\right) }; \end{aligned}$$$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left[ T\left( \prod \limits _{k=1}^{n}\cos \frac{x_{k}}{a_{n}\sqrt{n\left( n+k\right) }},\prod \limits _{k=1}^{n}\cos \frac{ky_{k}}{na_{n}\sqrt{n^{2}+k^{2}}}\right) \right] ^{na_{n}^{2}} \end{aligned}$$$$\begin{aligned} =e^{-\frac{\left( \ln 2\right) T\left( x^{2},\textbf{1}\right) +\left( 1- \frac{\pi }{4}\right) T\left( \textbf{1},y^{2}\right) }{2}}. \end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。