{"title":"多分量非磁化等离子体中正面碰撞产生的尘埃声孤子和激波结构","authors":"Umma Imon, Mohammad Shah Alam","doi":"10.1007/s10509-024-04392-6","DOIUrl":null,"url":null,"abstract":"<div><p>An unmagnetized plasma system comprising Maxwellian electrons, nonthermal ions, and variable negative charged dust grains is considered to investigate the consequence of head-on collision (such as interaction processes, and phase shifts) and the formation of dust acoustic soliton as well as shock structures in the Halley’s Comet (HC), Interstellar Clouds (IC), Noctilucent Clouds (NC), and Saturn’s Spokes (SS) environments. The two-sided Korteweg de Vries Burger (KdVB) and Korteweg de Vries (KdV) equations and corresponding phase shifts are derived employing the extended Poincaré-Lighthill-Kuo (ePLK) reductive perturbation technique (ePLKRPT). The coefficient of nonlinearities vanishes in each environment at the critical value of the plasma parameters. Consequently, the nonlinearity-coupled modified KdVB (mKdVB) and modified KdV (mKdV) equations, and the associated phase shifts have been derived. The concerned parameters play a crucial role in forming soliton and shock structures, phase shifts, and the interaction process of solitons and shocks in each environment. The compressive hump-shaped structures for mKdV solitons, as well as only positive phase shifts, are produced due to the influences of concerned parameters in each environment. In the collision processes, both the KdV and mKdV dust acoustic solitons follow the principle of superposition, but the shocks do not follow the principle of superposition.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dust acoustic soliton and shock structures with consequence of head-on collision in multi-component unmagnetized plasmas\",\"authors\":\"Umma Imon, Mohammad Shah Alam\",\"doi\":\"10.1007/s10509-024-04392-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An unmagnetized plasma system comprising Maxwellian electrons, nonthermal ions, and variable negative charged dust grains is considered to investigate the consequence of head-on collision (such as interaction processes, and phase shifts) and the formation of dust acoustic soliton as well as shock structures in the Halley’s Comet (HC), Interstellar Clouds (IC), Noctilucent Clouds (NC), and Saturn’s Spokes (SS) environments. The two-sided Korteweg de Vries Burger (KdVB) and Korteweg de Vries (KdV) equations and corresponding phase shifts are derived employing the extended Poincaré-Lighthill-Kuo (ePLK) reductive perturbation technique (ePLKRPT). The coefficient of nonlinearities vanishes in each environment at the critical value of the plasma parameters. Consequently, the nonlinearity-coupled modified KdVB (mKdVB) and modified KdV (mKdV) equations, and the associated phase shifts have been derived. The concerned parameters play a crucial role in forming soliton and shock structures, phase shifts, and the interaction process of solitons and shocks in each environment. The compressive hump-shaped structures for mKdV solitons, as well as only positive phase shifts, are produced due to the influences of concerned parameters in each environment. In the collision processes, both the KdV and mKdV dust acoustic solitons follow the principle of superposition, but the shocks do not follow the principle of superposition.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04392-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04392-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在哈雷彗星(HC)、星际云(IC)、夜光云(NC)和土星辐条(SS)环境中,考虑了一个由麦克斯韦电子、非热离子和可变负电荷尘埃颗粒组成的非磁化等离子体系统,以研究正面碰撞(如相互作用过程和相移)和尘埃声孤子的形成以及激波结构的后果。采用扩展的poincar - lighthill - kuo (ePLK)约化微扰技术(ePLKRPT)导出了双边Korteweg de Vries Burger (KdVB)和Korteweg de Vries (KdV)方程及其相移。在各环境下,非线性系数在等离子体参数的临界值处消失。在此基础上,推导了非线性耦合的修正KdVB (mKdVB)和修正KdV (mKdV)方程及其相移。在各种环境中,相关参数对孤子和激波结构的形成、相移以及孤子和激波的相互作用过程起着至关重要的作用。在各种环境下,相关参数的影响会导致mKdV孤子产生压缩驼峰结构,并且只产生正相移。在碰撞过程中,KdV和mKdV尘埃声孤子都遵循叠加原理,但激波不遵循叠加原理。
Dust acoustic soliton and shock structures with consequence of head-on collision in multi-component unmagnetized plasmas
An unmagnetized plasma system comprising Maxwellian electrons, nonthermal ions, and variable negative charged dust grains is considered to investigate the consequence of head-on collision (such as interaction processes, and phase shifts) and the formation of dust acoustic soliton as well as shock structures in the Halley’s Comet (HC), Interstellar Clouds (IC), Noctilucent Clouds (NC), and Saturn’s Spokes (SS) environments. The two-sided Korteweg de Vries Burger (KdVB) and Korteweg de Vries (KdV) equations and corresponding phase shifts are derived employing the extended Poincaré-Lighthill-Kuo (ePLK) reductive perturbation technique (ePLKRPT). The coefficient of nonlinearities vanishes in each environment at the critical value of the plasma parameters. Consequently, the nonlinearity-coupled modified KdVB (mKdVB) and modified KdV (mKdV) equations, and the associated phase shifts have been derived. The concerned parameters play a crucial role in forming soliton and shock structures, phase shifts, and the interaction process of solitons and shocks in each environment. The compressive hump-shaped structures for mKdV solitons, as well as only positive phase shifts, are produced due to the influences of concerned parameters in each environment. In the collision processes, both the KdV and mKdV dust acoustic solitons follow the principle of superposition, but the shocks do not follow the principle of superposition.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.